新生大鼠啶虫脒亚慢性暴露致成年后神经系统毒性的研究

李姝霖, 曹持, 王文成, 马瑞, 邓倩, 张亚文, 于春洋, 田建英. 新生大鼠啶虫脒亚慢性暴露致成年后神经系统毒性的研究[J]. 生态毒理学报, 2023, 18(2): 327-337. doi: 10.7524/AJE.1673-5897.20220914005
引用本文: 李姝霖, 曹持, 王文成, 马瑞, 邓倩, 张亚文, 于春洋, 田建英. 新生大鼠啶虫脒亚慢性暴露致成年后神经系统毒性的研究[J]. 生态毒理学报, 2023, 18(2): 327-337. doi: 10.7524/AJE.1673-5897.20220914005
Li Shulin, Cao Chi, Wang Wencheng, Ma Rui, Deng Qian, Zhang Yawen, Yu Chunyang, Tian Jianying. Sub-chronic Exposure to Acetamiprid in Neonatal Rats Leads to Neurotoxicity in Adulthood[J]. Asian journal of ecotoxicology, 2023, 18(2): 327-337. doi: 10.7524/AJE.1673-5897.20220914005
Citation: Li Shulin, Cao Chi, Wang Wencheng, Ma Rui, Deng Qian, Zhang Yawen, Yu Chunyang, Tian Jianying. Sub-chronic Exposure to Acetamiprid in Neonatal Rats Leads to Neurotoxicity in Adulthood[J]. Asian journal of ecotoxicology, 2023, 18(2): 327-337. doi: 10.7524/AJE.1673-5897.20220914005

新生大鼠啶虫脒亚慢性暴露致成年后神经系统毒性的研究

    作者简介: 李姝霖(1996—),女,硕士研究生,研究方向为神经退行性变的环境机制,E-mail: 787823144@qq.com
    通讯作者: 田建英, E-mail: tenengyi@163.com
  • 基金项目:

    国家自然科学基金资助项目(81160338);宁夏科技重点研发项目(2020BEG03048);宁夏自然科学基金资助项目(2020AAC03176)

  • 中图分类号: X171.5

Sub-chronic Exposure to Acetamiprid in Neonatal Rats Leads to Neurotoxicity in Adulthood

    Corresponding author: Tian Jianying, tenengyi@163.com
  • Fund Project:
  • 摘要: 观察新生大鼠啶虫脒(acetamiprid, ACE)慢暴露对成年后神经行为、大脑皮质与海马的影响。选择出生一周的雄性Sprague-Dawley (SD)大鼠18只,随机分为对照组(Control)、ACE-15组(15 mg·kg-1·d-1)、ACE-40组(40 mg·kg-1·d-1),每组6只。ACE暴露组灌胃干预9周,期间每周检测体质量。采用开放旷场实验(OFT)、Morris水迷宫(MWM)检测大鼠行为学变化;采用试剂盒检测大脑皮质和海马组织中丙二醛(MDA)和超氧化物歧化酶(SOD)水平;采用Western Blot法检测白细胞介素IL-1β、IL-10蛋白表达量;采用苏木精-伊红(H&E)染色法检测大脑皮质和海马组织病理学改变;采用Nissl染色法检测大脑海马DG、CA3区神经元变化。OFT结果显示,与对照组相比,ACE暴露组大鼠在中央区运动距离和时间均减少。MWM结果显示,定位巡航期间,暴露组逃逸潜伏期时间增加,目标象限停留时间减少。空间探索期间,ACE-40组跨平台次数减少,目标象限内游泳速度降低。暴露组大鼠脑皮质和海马组织中MDA浓度增高;暴露组大鼠脑皮质SOD活性降低,海马组织SOD活性增高。Western Blot结果显示,与对照组相比,暴露组大鼠皮质和海马组织中IL-1β表达量增高;IL-10表达量降低。H&E结果显示,ACE-40组海马DG、CA3区神经元出现排列紊乱、层数减少和轮廓模糊。Nissl染色结果显示,暴露组大鼠海马DG、CA3区神经元数量减少,尼氏小体减少。以上结果表明,新生大鼠ACE亚慢性暴露能够导致成年后神经行为变化,可能与脑皮质和海马组织的氧化应激与炎症有关。
  • 加载中
  • Bass C, Denholm I, Williamson M S, et al. The global status of insect resistance to neonicotinoid insecticides[J]. Pesticide Biochemistry and Physiology, 2015, 121: 78-87
    Taillebois E, Cartereau A, Jones A K, et al. Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies[J]. Pesticide Biochemistry and Physiology, 2018, 151: 59-66
    Katić A, Kašuba V, Kopjar N, et al. Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats[J]. Chemico-Biological Interactions, 2021, 338: 109287
    Chen M, Tao L, McLean J, et al. Quantitative analysis of neonicotinoid insecticide residues in foods: Implication for dietary exposures[J]. Journal of Agricultural and Food Chemistry, 2014, 62(26): 6082-6090
    Menon M, Mohanraj R, Sujata W. Monitoring of neonicotinoid pesticides in water-soil systems along the agro-landscapes of the Cauvery delta region, South India[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(6): 1065-1070
    Cycoń M, Piotrowska-Seget Z. Biochemical and microbial soil functioning after application of the insecticide imidacloprid[J]. Journal of Environmental Sciences, 2015, 27: 147-158
    Hladik M L, Kolpin D W, Kuivila K M. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA[J]. Environmental Pollution, 2014, 193: 189-196
    Morrissey C A, Mineau P, Devries J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review[J]. Environment International, 2015, 74: 291-303
    The Food and Agriculture Organization. 5.2 acetamiprid (246) toxicology[EB/OL]. (2019-03-28)[2022-09-14] http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report11/Acetamiprid.pdf
    Zhao G P, Yang F W, Li J W, et al. Toxicities of neonicotinoid-containing pesticide mixtures on nontarget organisms[J]. Environmental Toxicology and Chemistry, 2020, 39(10): 1884-1893
    Wang H X, Yang D J, Fang H J, et al. Predictors, sources, and health risk of exposure to neonicotinoids in Chinese school children: A biomonitoring-based study[J]. Environment International, 2020, 143: 105918
    Hirai A, Sugio S, Nimako C, et al. Ca2+ imaging with two-photon microscopy to detect the disruption of brain function in mice administered neonicotinoid insecticides[J]. Scientific Reports, 2022, 12(1): 1-13
    Brunet J L, Maresca M, Fantini J, et al. Intestinal absorption of the acetamiprid neonicotinoid by Caco-2 cells: Transepithelial transport, cellular uptake and efflux[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43(3): 261-270
    Kavvalakis M P, Tzatzarakis M N, Theodoropoulou E P, et al. Development and application of LC-APCI-MS method for biomonitoring of animal and human exposure to imidacloprid[J]. Chemosphere, 2013, 93(10): 2612-2620
    Todani M, Kaneko T, Hayashida H, et al. Acute poisoning with neonicotinoid insecticide acetamiprid[J]. The Japanese Journal of Toxicology, 2008, 21(4): 387-390
    Nakayama A, Yoshida M, Kagawa N, et al. The neonicotinoids acetamiprid and imidacloprid impair neurogenesis and alter the microglial profile in the hippocampal dentate gyrus of mouse neonates[J]. Journal of Applied Toxicology, 2019, 39(6): 877-887
    EFSA Panel on Plant Protection Products and their Residues (PPR). Scientific Opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid[J]. EFSA Journal, 2013, 11(12): 3471
    Simon-Delso N, Amaral-Rogers V, Belzunces L P, et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites[J]. Environmental Science and Pollution Research, 2015, 22(1): 5-34
    Aseperi A K, Busquets R, Hooda P S, et al. Behaviour of neonicotinoids in contrasting soils[J]. Journal of Environmental Management, 2020, 276: 111329
    Loser D, Hinojosa M G, Blum J, et al. Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons[J]. Archives of Toxicology, 2021, 95(6): 2081-2107
    Gasmi S, Kebieche M, Rouabhi R, et al. Alteration of membrane integrity and respiratory function of brain mitochondria in the rats chronically exposed to a low dose of acetamiprid[J]. Environmental Science and Pollution Research, 2017, 24(28): 22258-22264
    Karaca B U, Arican Y E, Boran T, et al. Toxic effects of subchronic oral acetamiprid exposure in rats[J]. Toxicology and Industrial Health, 2019, 35(11-12): 679-687
    Kagawa N, Nagao T. Neurodevelopmental toxicity in the mouse neocortex following prenatal exposure to acetamiprid[J]. Journal of Applied Toxicology, 2018, 38(12): 1521-1528
    Dhouib I B, Annabi A, Doghri R, et al. Neuroprotective effects of curcumin against acetamiprid-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: Biochemical, histological, and behavioral changes[J]. Environmental Science and Pollution Research International, 2017, 24(35): 27515-27524
    Shamsi M, Soodi M, Shahbazi S, et al. Effect of acetamiprid on spatial memory and hippocampal glutamatergic system[J]. Environmental Science and Pollution Research International, 2021, 28(22): 27933-27941
    胡爱萍, 周红宇, 秦晓怡. 甲醛对小鼠的学习记忆及脑组织抗氧化酶的影响[J]. 环境与健康杂志, 2007, 24(9): 686-688

    Hu A P, Zhou H Y, Qin X Y. Effects of formaldehyde on learning, memory and activity of antioxidase in cerebral tissues of mice[J]. Journal of Environment and Health, 2007, 24(9): 686-688(in Chinese)

    Mandal P, Mondal S, Karnam S S, et al. A behavioral study on learning and memory in adult Sprague Dawley rat in induced acetamiprid toxicity[J]. Exploratory Animal and Medical Research, 2015, 5: 27-32
    Ford K A, Casida J E. Chloropyridinyl neonicotinoid insecticides: Diverse molecular substituents contribute to facile metabolism in mice[J]. Chemical Research in Toxicology, 2006, 19(7): 944-951
    Abd-Elhakim Y M, Mohammed H H, Mohamed W A M. Imidacloprid impacts on neurobehavioral performance, oxidative stress, and apoptotic events in the brain of adolescent and adult rats[J]. Journal of Agricultural and Food Chemistry, 2018, 66(51): 13513-13524
    Bhardwaj S, Srivastava M K, Kapoor U, et al. A 90 days oral toxicity of imidacloprid in female rats: Morphological, biochemical and histopathological evaluations[J]. Food and Chemical Toxicology, 2010, 48(5): 1185-1190
    Agrawal A, Sharma B. Pesticides induced oxidative stress in mammalian systems: A review[J]. International Journal of Biological & Medical Research, 2010, 1(3): 90-104
    Salim S. Oxidative stress and the central nervous system[J]. Journal of Pharmacology and Experimental Therapeutics, 2016, 360(1): 201-205
    Annabi E, Ben Salem I, Abid-Essefi S. Acetamiprid, a neonicotinoid insecticide, induced cytotoxicity and genotoxicity in PC12 cells[J]. Toxicology Mechanisms and Methods, 2019, 29(8): 580-586
    Panemangalore M, Bebe F N. Dermal exposure to pesticides modifies antioxidant enzymes in tissues of rats[J]. Journal of Environmental Science and Health, Part B, 2000, 35(4): 399-416
    Terayama H, Endo H, Tsukamoto H, et al. Acetamiprid accumulates in different amounts in murine brain regions[J]. International Journal of Environmental Research and Public Health, 2016, 13(10): 937
    Taylor J M, Main B S, Crack P J. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson's disease[J]. Neurochemistry International, 2013, 62(5): 803-819
    Lopez-Rodriguez A B, Hennessy E, Murray C L, et al. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer's disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction[J]. Alzheimer's & Dementia, 2021, 17(10): 1735-1755
    Lee G H, Choi K C. Adverse effects of pesticides on the functions of immune system[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2020, 235: 108789
    Mendiola A S, Cardona A E. The IL-1β phenomena in neuroinflammatory diseases[J]. Journal of Neural Transmission, 2018, 125(5): 781-795
    Santhanasabapathy R, Vasudevan S, Anupriya K, et al. Farnesol quells oxidative stress, reactive gliosis and inflammation during acrylamide-induced neurotoxicity: Behavioral and biochemical evidence[J]. Neuroscience, 2015, 308: 212-227
  • 加载中
计量
  • 文章访问数:  1374
  • HTML全文浏览数:  1374
  • PDF下载数:  133
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-14
李姝霖, 曹持, 王文成, 马瑞, 邓倩, 张亚文, 于春洋, 田建英. 新生大鼠啶虫脒亚慢性暴露致成年后神经系统毒性的研究[J]. 生态毒理学报, 2023, 18(2): 327-337. doi: 10.7524/AJE.1673-5897.20220914005
引用本文: 李姝霖, 曹持, 王文成, 马瑞, 邓倩, 张亚文, 于春洋, 田建英. 新生大鼠啶虫脒亚慢性暴露致成年后神经系统毒性的研究[J]. 生态毒理学报, 2023, 18(2): 327-337. doi: 10.7524/AJE.1673-5897.20220914005
Li Shulin, Cao Chi, Wang Wencheng, Ma Rui, Deng Qian, Zhang Yawen, Yu Chunyang, Tian Jianying. Sub-chronic Exposure to Acetamiprid in Neonatal Rats Leads to Neurotoxicity in Adulthood[J]. Asian journal of ecotoxicology, 2023, 18(2): 327-337. doi: 10.7524/AJE.1673-5897.20220914005
Citation: Li Shulin, Cao Chi, Wang Wencheng, Ma Rui, Deng Qian, Zhang Yawen, Yu Chunyang, Tian Jianying. Sub-chronic Exposure to Acetamiprid in Neonatal Rats Leads to Neurotoxicity in Adulthood[J]. Asian journal of ecotoxicology, 2023, 18(2): 327-337. doi: 10.7524/AJE.1673-5897.20220914005

新生大鼠啶虫脒亚慢性暴露致成年后神经系统毒性的研究

    通讯作者: 田建英, E-mail: tenengyi@163.com
    作者简介: 李姝霖(1996—),女,硕士研究生,研究方向为神经退行性变的环境机制,E-mail: 787823144@qq.com
  • 1. 宁夏医科大学基础医学院, 银川 750004;
  • 2. 宁夏医科大学总医院, 银川 750004;
  • 3. 宁夏回族自治区人民医院, 银川 750002;
  • 4. 银川市第一人民医院, 银川 750004
基金项目:

国家自然科学基金资助项目(81160338);宁夏科技重点研发项目(2020BEG03048);宁夏自然科学基金资助项目(2020AAC03176)

摘要: 观察新生大鼠啶虫脒(acetamiprid, ACE)慢暴露对成年后神经行为、大脑皮质与海马的影响。选择出生一周的雄性Sprague-Dawley (SD)大鼠18只,随机分为对照组(Control)、ACE-15组(15 mg·kg-1·d-1)、ACE-40组(40 mg·kg-1·d-1),每组6只。ACE暴露组灌胃干预9周,期间每周检测体质量。采用开放旷场实验(OFT)、Morris水迷宫(MWM)检测大鼠行为学变化;采用试剂盒检测大脑皮质和海马组织中丙二醛(MDA)和超氧化物歧化酶(SOD)水平;采用Western Blot法检测白细胞介素IL-1β、IL-10蛋白表达量;采用苏木精-伊红(H&E)染色法检测大脑皮质和海马组织病理学改变;采用Nissl染色法检测大脑海马DG、CA3区神经元变化。OFT结果显示,与对照组相比,ACE暴露组大鼠在中央区运动距离和时间均减少。MWM结果显示,定位巡航期间,暴露组逃逸潜伏期时间增加,目标象限停留时间减少。空间探索期间,ACE-40组跨平台次数减少,目标象限内游泳速度降低。暴露组大鼠脑皮质和海马组织中MDA浓度增高;暴露组大鼠脑皮质SOD活性降低,海马组织SOD活性增高。Western Blot结果显示,与对照组相比,暴露组大鼠皮质和海马组织中IL-1β表达量增高;IL-10表达量降低。H&E结果显示,ACE-40组海马DG、CA3区神经元出现排列紊乱、层数减少和轮廓模糊。Nissl染色结果显示,暴露组大鼠海马DG、CA3区神经元数量减少,尼氏小体减少。以上结果表明,新生大鼠ACE亚慢性暴露能够导致成年后神经行为变化,可能与脑皮质和海马组织的氧化应激与炎症有关。

English Abstract

参考文献 (40)

返回顶部

目录

/

返回文章
返回