环境浓度微囊藻毒素-LR对菖蒲无机氮吸收特性的影响

袁昭瑞, 马腾, 陈国元, 李青松, 吴义诚. 环境浓度微囊藻毒素-LR对菖蒲无机氮吸收特性的影响[J]. 生态毒理学报, 2023, 18(2): 338-345. doi: 10.7524/AJE.1673-5897.20220919001
引用本文: 袁昭瑞, 马腾, 陈国元, 李青松, 吴义诚. 环境浓度微囊藻毒素-LR对菖蒲无机氮吸收特性的影响[J]. 生态毒理学报, 2023, 18(2): 338-345. doi: 10.7524/AJE.1673-5897.20220919001
Yuan Zhaorui, Ma Teng, Chen Guoyuan, Li Qingsong, Wu Yicheng. Effects of Microcystin-LR at Environmental Concentrations on Inorganic Nitrogen Uptake Characteristics of Acorus calamus L.[J]. Asian journal of ecotoxicology, 2023, 18(2): 338-345. doi: 10.7524/AJE.1673-5897.20220919001
Citation: Yuan Zhaorui, Ma Teng, Chen Guoyuan, Li Qingsong, Wu Yicheng. Effects of Microcystin-LR at Environmental Concentrations on Inorganic Nitrogen Uptake Characteristics of Acorus calamus L.[J]. Asian journal of ecotoxicology, 2023, 18(2): 338-345. doi: 10.7524/AJE.1673-5897.20220919001

环境浓度微囊藻毒素-LR对菖蒲无机氮吸收特性的影响

    作者简介: 袁昭瑞(1995—),男,硕士研究生,研究方向为藻毒素生态毒理学,E-mail: 442996736@qq.com
    通讯作者: 陈国元, E-mail: chengy@xmut.edu.cn
  • 基金项目:

    福建省自然科学基金资助项目(2020J01256);福建省高校产学研联合创新项目(2021Y4005);厦门理工学院科研攀登计划项目(XPDKT19026);厦门理工学院研究生科技创新计划基金资助项目(YKJCX2021161)

  • 中图分类号: X171.5

Effects of Microcystin-LR at Environmental Concentrations on Inorganic Nitrogen Uptake Characteristics of Acorus calamus L.

    Corresponding author: Chen Guoyuan, chengy@xmut.edu.cn
  • Fund Project:
  • 摘要: 富营养化水体中存在的微囊藻毒素(microcystins, MCs)会对水生植物的营养吸收产生潜在威胁。为探讨MCs对水生植物无机氮吸收的影响,分析不同浓度微囊藻毒素-LR(MC-LR)暴露15 d后挺水植物菖蒲对无机氮的吸收特性及其动力学特征。结果表明,0.001 mg·L-1 MC-LR暴露条件下,菖蒲根系活力、根系生物量及细胞质膜(PM)H+-ATP酶活性均显著增加,MC-LR暴露对菖蒲的NO-3-N和NH+4-N吸收均有促进作用;0.01 mg·L-1 MC-LR暴露条件下,菖蒲根系活力、根系生物量及PM H+-ATP酶活性均有一定程度上升,菖蒲对NO-3-N的亲和力和吸收潜能下降,但对NH+4-N的吸收速率上升;0.03 mg·L-1 MC-LR暴露条件下,菖蒲根系活力、根系生物量及PM H+-ATP酶活性均显著下降,MC-LR暴露通过降低菖蒲对NO-3-N和NH+4-N的亲和力和吸收潜能来抑制其对无机氮的吸收。与NH+4-N相比,0.03 mg·L-1 MC-LR对NO-3-N吸收的抑制作用更强。MC-LR(0.001~0.01 mg·L-1)暴露对菖蒲NH+4-N吸收有不同程度的促进作用,而0.03 mg·L-1 MC-LR暴露对菖蒲的NH+4-N和NO-3-N吸收均产生明显抑制,对菖蒲生长及其氮的去除能力产生不利影响。
  • 加载中
  • Achal V, Mukherjee A. Ecological Wisdom Inspired Restoration Engineering[M]. Singapore: Springer, 2019: 181-195
    彭婉婷, 邹琳, 段维波, 等. 多种湿地植物组合对污水中氮和磷的去除效果[J]. 环境科学学报, 2012, 32(3): 612-617

    Peng W T, Zou L, Duan W B, et al. Efficiency of nitrogen and phosphorus removal from sewage by various combinations of wetland plants[J]. Acta Scientiae Circumstantiae, 2012, 32(3): 612-617(in Chinese)

    Hammou H A, Latour D, Samoudi S, et al. Occurrence of the first toxic microcystis bloom in a recent Moroccan Reservoir[J]. Water Resources, 2018, 45(3): 409-417
    Puddick J, Prinsep M R, Wood S A, et al. Further characterization of glycine-containing microcystins from the McMurdo Dry Valleys of Antarctica[J]. Toxins, 2015, 7(2): 493-515
    Wu J, Shao S J, Zhou F, et al. Reproductive toxicity on female mice induced by microcystin-LR[J]. Environmental Toxicology and Pharmacology, 2014, 37(1): 1-6
    Hu X B, Zhang R F, Ye J Y, et al. Monitoring and research of microcystins and environmental factors in a typical artificial freshwater aquaculture pond[J]. Environmental Science and Pollution Research, 2018, 25(6): 5921-5933
    Major Y, Kifle D, Spoof L, et al. Cyanobacteria and microcystins in Koka Reservoir (Ethiopia)[J]. Environmental Science and Pollution Research International, 2018, 25(27): 26861-26873
    刘佳, 黄哲旖, 胡馨月, 等. 微囊藻毒素与鱼腥藻毒素对生菜活性氧稳态的复合影响[J]. 环境化学, 2022, 41(11): 3738-3745
    Dong J, Dai D J, Yang Y, et al. Responses of submerged macrophyte Ceratophyllum demersum to the gradient concentrations of microcystin-LR (MC-LR)[J]. Environmental Science and Pollution Research, 2022, 29(47): 71257-71269
    Chen S H, Jiang J L, Long T, et al. Oxidative stress induced in rice suspension cells exposed to microcystin-LR at environmentally relevant concentrations[J]. Environmental Science and Pollution Research International, 2021, 28(28): 38393-38405
    Chen G Y, Zheng Z H, Bai M X, et al. Chronic effects of microcystin-LR at environmental relevant concentrations on photosynthesis of Typha angustifolia Linn[J]. Ecotoxicology, 2020, 29(5): 514-523
    Zhang Y Y, Duy S V, Munoz G, et al. Phytotoxic effects of microcystins, anatoxin-a and cylindrospermopsin to aquatic plants: A meta-analysis[J]. The Science of the Total Environment, 2022, 810: 152104
    陈国元, 廖腾芳, 李青松. 微囊藻毒素-LR慢性暴露对水雍菜光合生理的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(9): 129-136, 143 Chen G Y, Liao T F, Li Q S. Effects of chronic exposure to microcystin-LR on photosynthetic physiology of Ipomoea aquatica[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(9): 129-136, 143(in Chinese)
    Gao Y N, Yang H, Gao X F, et al. Ecological damage of submerged macrophyte Myriophyllum spicatum by cell extracts from microcystin (MC)- and non-MC-producing cyanobacteria, microcystis[J]. Journal of Oceanology and Limnology, 2022, 40(5): 1732-1749
    Machado J, Azevedo J, Freitas M, et al. Analysis of the use of microcystin-contaminated water in the growth and nutritional quality of the root-vegetable, Daucus carota[J]. Environmental Science and Pollution Research International, 2017, 24(1): 752-764
    Claassen N, Barber S A. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants[J]. Plant Physiology, 1974, 54(4): 564-568
    Hajari E, Snyman S J, Watt M P. Inorganic nitrogen uptake kinetics of sugarcane (Saccharum spp.) varieties under in vitro conditions with varying N supply[J]. Plant Cell, Tissue and Organ Culture, 2014, 117(3): 361-371
    Huang Q Q, Yu Y, Wang Q, et al. Uptake kinetics and translocation of selenite and selenate as affected by iron plaque on root surfaces of rice seedlings[J]. Planta, 2015, 241(4): 907-916
    Malea P, Kevrekidis T, Chatzipanagiotou K R, et al. Cadmium uptake kinetics in parts of the seagrass Cymodocea nodosa at high exposure concentrations[J]. Journal of Biological Research, 2018, 25: 5
    陈国元, 廖杰, 何彩庆, 等. 低浓度微囊藻毒素MC-LR对梭鱼草幼苗根系NH+4和H2PO4-吸收特性的影响[J]. 植物资源与环境学报, 2018, 27(3): 33-40

    Chen G Y, Liao J, He C Q, et al. Effects of low concentrations of microcystin MC-LR on NH+4 and H2PO4- absorption characteristics of root of Pontederia cordata seedling[J]. Journal of Plant Resources and Environment, 2018, 27(3): 33-40(in Chinese)

    Luo H H, Zhang Y L, Zhang W F. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch[J]. Photosynthetica, 2016, 54(1): 65-73
    Gay C A, Gebicki J M. Measurement of protein and lipid hydroperoxides in biological systems by the ferric–xylenol orange method[J]. Analytical Biochemistry, 2003, 315(1): 29-35
    中国科学院上海植物生理研究所. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999: 138-306
    Falhof J, Pedersen J, Fuglsang A, et al. Plasma membrane H+-ATPase regulation in the center of plant physiology[J]. Molecular Plant, 2016, 9(3): 323-337
    Chen H F, Zhang Q, Cai H M, et al. Ethylene mediates alkaline-induced rice growth inhibition by negatively regulating plasma membrane H+-ATPase activity in roots[J]. Frontiers in Plant Science, 2017, 8: 1839
    Loss Sperandio M V, Santos L A, Huertas Tavares O C, et al. Silencing the Oryza sativa plasma membrane H+-ATPase isoform OsA2 affects grain yield and shoot growth and decreases nitrogen concentration[J]. Journal of Plant Physiology, 2020, 251: 153220
    李旭霞, 荣湘民, 谢桂先, 等. 不同水生植物吸收地表水中氮磷能力差异及其机理[J]. 水土保持学报, 2018, 32(1): 259-263

    Li X X, Rong X M, Xie G X, et al. Difference in absorbability of different aquatic plants on N and P in surface water and its mechanism[J]. Journal of Soil and Water Conservation, 2018, 32(1): 259-263(in Chinese)

    Mengel K, Robin P, Salsac L. Nitrate reductase activity in shoots and roots of maize seedlings as affected by the form of nitrogen nutrition and the pH of the nutrient solution[J]. Plant Physiology, 1983, 71(3): 618-622
    Chen G Y, Li Q S, Bai M X, et al. Nitrogen metabolism in Acorus calamus L. leaves induced changes in response to microcystin-LR at environmentally relevant concentrations[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(2): 280-285
    Li Y, Gao Y X, Ding L, et al. Ammonium enhances the tolerance of rice seedlings (Oryza sativa L.) to drought condition[J]. Agricultural Water Management, 2009, 96(12): 1746-1750
    Ding L, Gao C M, Li Y R, et al. The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP)[J]. Plant Science, 2015, 234: 14-21
    Zhang C X. Net NH+4 and NO-3 fluxes, and expression of NH+4 and NO-3 transporter genes in roots of Populus simonii after acclimation to moderate salinity[J]. Trees, 2014, 28(6): 1813-1821
    Jampeetong A, Brix H. Nitrogen nutrition of Salvinia natans: Effects of inorganic nitrogen form on growth, morphology, nitrate reductase activity and uptake kinetics of ammonium and nitrate[J]. Aquatic Botany, 2009, 90(1): 67-73
    Nishikawa T, Tarutani K, Yamamoto T. Nitrate and phosphate uptake kinetics of the harmful diatom Coscinodiscus wailesii, a causative organism in the bleaching of aquacultured Porphyra thalli[J]. Harmful Algae, 2010, 9(6): 563-567
  • 加载中
计量
  • 文章访问数:  1241
  • HTML全文浏览数:  1241
  • PDF下载数:  86
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-19
袁昭瑞, 马腾, 陈国元, 李青松, 吴义诚. 环境浓度微囊藻毒素-LR对菖蒲无机氮吸收特性的影响[J]. 生态毒理学报, 2023, 18(2): 338-345. doi: 10.7524/AJE.1673-5897.20220919001
引用本文: 袁昭瑞, 马腾, 陈国元, 李青松, 吴义诚. 环境浓度微囊藻毒素-LR对菖蒲无机氮吸收特性的影响[J]. 生态毒理学报, 2023, 18(2): 338-345. doi: 10.7524/AJE.1673-5897.20220919001
Yuan Zhaorui, Ma Teng, Chen Guoyuan, Li Qingsong, Wu Yicheng. Effects of Microcystin-LR at Environmental Concentrations on Inorganic Nitrogen Uptake Characteristics of Acorus calamus L.[J]. Asian journal of ecotoxicology, 2023, 18(2): 338-345. doi: 10.7524/AJE.1673-5897.20220919001
Citation: Yuan Zhaorui, Ma Teng, Chen Guoyuan, Li Qingsong, Wu Yicheng. Effects of Microcystin-LR at Environmental Concentrations on Inorganic Nitrogen Uptake Characteristics of Acorus calamus L.[J]. Asian journal of ecotoxicology, 2023, 18(2): 338-345. doi: 10.7524/AJE.1673-5897.20220919001

环境浓度微囊藻毒素-LR对菖蒲无机氮吸收特性的影响

    通讯作者: 陈国元, E-mail: chengy@xmut.edu.cn
    作者简介: 袁昭瑞(1995—),男,硕士研究生,研究方向为藻毒素生态毒理学,E-mail: 442996736@qq.com
  • 1. 厦门理工学院环境科学与工程学院, 厦门 361024;
  • 2. 厦门市水资源利用与保护重点实验室, 厦门 361024
基金项目:

福建省自然科学基金资助项目(2020J01256);福建省高校产学研联合创新项目(2021Y4005);厦门理工学院科研攀登计划项目(XPDKT19026);厦门理工学院研究生科技创新计划基金资助项目(YKJCX2021161)

摘要: 富营养化水体中存在的微囊藻毒素(microcystins, MCs)会对水生植物的营养吸收产生潜在威胁。为探讨MCs对水生植物无机氮吸收的影响,分析不同浓度微囊藻毒素-LR(MC-LR)暴露15 d后挺水植物菖蒲对无机氮的吸收特性及其动力学特征。结果表明,0.001 mg·L-1 MC-LR暴露条件下,菖蒲根系活力、根系生物量及细胞质膜(PM)H+-ATP酶活性均显著增加,MC-LR暴露对菖蒲的NO-3-N和NH+4-N吸收均有促进作用;0.01 mg·L-1 MC-LR暴露条件下,菖蒲根系活力、根系生物量及PM H+-ATP酶活性均有一定程度上升,菖蒲对NO-3-N的亲和力和吸收潜能下降,但对NH+4-N的吸收速率上升;0.03 mg·L-1 MC-LR暴露条件下,菖蒲根系活力、根系生物量及PM H+-ATP酶活性均显著下降,MC-LR暴露通过降低菖蒲对NO-3-N和NH+4-N的亲和力和吸收潜能来抑制其对无机氮的吸收。与NH+4-N相比,0.03 mg·L-1 MC-LR对NO-3-N吸收的抑制作用更强。MC-LR(0.001~0.01 mg·L-1)暴露对菖蒲NH+4-N吸收有不同程度的促进作用,而0.03 mg·L-1 MC-LR暴露对菖蒲的NH+4-N和NO-3-N吸收均产生明显抑制,对菖蒲生长及其氮的去除能力产生不利影响。

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回