Bass C, Denholm I, Williamson M S, et al. The global status of insect resistance to neonicotinoid insecticides[J]. Pesticide Biochemistry and Physiology, 2015, 121: 78-87
|
Taillebois E, Cartereau A, Jones A K, et al. Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies[J]. Pesticide Biochemistry and Physiology, 2018, 151: 59-66
|
Katić A, Kašuba V, Kopjar N, et al. Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats[J]. Chemico-Biological Interactions, 2021, 338: 109287
|
Chen M, Tao L, McLean J, et al. Quantitative analysis of neonicotinoid insecticide residues in foods: Implication for dietary exposures[J]. Journal of Agricultural and Food Chemistry, 2014, 62(26): 6082-6090
|
Menon M, Mohanraj R, Sujata W. Monitoring of neonicotinoid pesticides in water-soil systems along the agro-landscapes of the Cauvery delta region, South India[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(6): 1065-1070
|
Cycoń M, Piotrowska-Seget Z. Biochemical and microbial soil functioning after application of the insecticide imidacloprid[J]. Journal of Environmental Sciences, 2015, 27: 147-158
|
Hladik M L, Kolpin D W, Kuivila K M. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA[J]. Environmental Pollution, 2014, 193: 189-196
|
Morrissey C A, Mineau P, Devries J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review[J]. Environment International, 2015, 74: 291-303
|
The Food and Agriculture Organization. 5.2 acetamiprid (246) toxicology[EB/OL]. (2019-03-28)[2022-09-14] http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report11/Acetamiprid.pdf
|
Zhao G P, Yang F W, Li J W, et al. Toxicities of neonicotinoid-containing pesticide mixtures on nontarget organisms[J]. Environmental Toxicology and Chemistry, 2020, 39(10): 1884-1893
|
Wang H X, Yang D J, Fang H J, et al. Predictors, sources, and health risk of exposure to neonicotinoids in Chinese school children: A biomonitoring-based study[J]. Environment International, 2020, 143: 105918
|
Hirai A, Sugio S, Nimako C, et al. Ca2+ imaging with two-photon microscopy to detect the disruption of brain function in mice administered neonicotinoid insecticides[J]. Scientific Reports, 2022, 12(1): 1-13
|
Brunet J L, Maresca M, Fantini J, et al. Intestinal absorption of the acetamiprid neonicotinoid by Caco-2 cells: Transepithelial transport, cellular uptake and efflux[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43(3): 261-270
|
Kavvalakis M P, Tzatzarakis M N, Theodoropoulou E P, et al. Development and application of LC-APCI-MS method for biomonitoring of animal and human exposure to imidacloprid[J]. Chemosphere, 2013, 93(10): 2612-2620
|
Todani M, Kaneko T, Hayashida H, et al. Acute poisoning with neonicotinoid insecticide acetamiprid[J]. The Japanese Journal of Toxicology, 2008, 21(4): 387-390
|
Nakayama A, Yoshida M, Kagawa N, et al. The neonicotinoids acetamiprid and imidacloprid impair neurogenesis and alter the microglial profile in the hippocampal dentate gyrus of mouse neonates[J]. Journal of Applied Toxicology, 2019, 39(6): 877-887
|
EFSA Panel on Plant Protection Products and their Residues (PPR). Scientific Opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid[J]. EFSA Journal, 2013, 11(12): 3471
|
Simon-Delso N, Amaral-Rogers V, Belzunces L P, et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites[J]. Environmental Science and Pollution Research, 2015, 22(1): 5-34
|
Aseperi A K, Busquets R, Hooda P S, et al. Behaviour of neonicotinoids in contrasting soils[J]. Journal of Environmental Management, 2020, 276: 111329
|
Loser D, Hinojosa M G, Blum J, et al. Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons[J]. Archives of Toxicology, 2021, 95(6): 2081-2107
|
Gasmi S, Kebieche M, Rouabhi R, et al. Alteration of membrane integrity and respiratory function of brain mitochondria in the rats chronically exposed to a low dose of acetamiprid[J]. Environmental Science and Pollution Research, 2017, 24(28): 22258-22264
|
Karaca B U, Arican Y E, Boran T, et al. Toxic effects of subchronic oral acetamiprid exposure in rats[J]. Toxicology and Industrial Health, 2019, 35(11-12): 679-687
|
Kagawa N, Nagao T. Neurodevelopmental toxicity in the mouse neocortex following prenatal exposure to acetamiprid[J]. Journal of Applied Toxicology, 2018, 38(12): 1521-1528
|
Dhouib I B, Annabi A, Doghri R, et al. Neuroprotective effects of curcumin against acetamiprid-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: Biochemical, histological, and behavioral changes[J]. Environmental Science and Pollution Research International, 2017, 24(35): 27515-27524
|
Shamsi M, Soodi M, Shahbazi S, et al. Effect of acetamiprid on spatial memory and hippocampal glutamatergic system[J]. Environmental Science and Pollution Research International, 2021, 28(22): 27933-27941
|
胡爱萍, 周红宇, 秦晓怡. 甲醛对小鼠的学习记忆及脑组织抗氧化酶的影响[J]. 环境与健康杂志, 2007, 24(9): 686-688
Hu A P, Zhou H Y, Qin X Y. Effects of formaldehyde on learning, memory and activity of antioxidase in cerebral tissues of mice[J]. Journal of Environment and Health, 2007, 24(9): 686-688(in Chinese)
|
Mandal P, Mondal S, Karnam S S, et al. A behavioral study on learning and memory in adult Sprague Dawley rat in induced acetamiprid toxicity[J]. Exploratory Animal and Medical Research, 2015, 5: 27-32
|
Ford K A, Casida J E. Chloropyridinyl neonicotinoid insecticides: Diverse molecular substituents contribute to facile metabolism in mice[J]. Chemical Research in Toxicology, 2006, 19(7): 944-951
|
Abd-Elhakim Y M, Mohammed H H, Mohamed W A M. Imidacloprid impacts on neurobehavioral performance, oxidative stress, and apoptotic events in the brain of adolescent and adult rats[J]. Journal of Agricultural and Food Chemistry, 2018, 66(51): 13513-13524
|
Bhardwaj S, Srivastava M K, Kapoor U, et al. A 90 days oral toxicity of imidacloprid in female rats: Morphological, biochemical and histopathological evaluations[J]. Food and Chemical Toxicology, 2010, 48(5): 1185-1190
|
Agrawal A, Sharma B. Pesticides induced oxidative stress in mammalian systems: A review[J]. International Journal of Biological & Medical Research, 2010, 1(3): 90-104
|
Salim S. Oxidative stress and the central nervous system[J]. Journal of Pharmacology and Experimental Therapeutics, 2016, 360(1): 201-205
|
Annabi E, Ben Salem I, Abid-Essefi S. Acetamiprid, a neonicotinoid insecticide, induced cytotoxicity and genotoxicity in PC12 cells[J]. Toxicology Mechanisms and Methods, 2019, 29(8): 580-586
|
Panemangalore M, Bebe F N. Dermal exposure to pesticides modifies antioxidant enzymes in tissues of rats[J]. Journal of Environmental Science and Health, Part B, 2000, 35(4): 399-416
|
Terayama H, Endo H, Tsukamoto H, et al. Acetamiprid accumulates in different amounts in murine brain regions[J]. International Journal of Environmental Research and Public Health, 2016, 13(10): 937
|
Taylor J M, Main B S, Crack P J. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson's disease[J]. Neurochemistry International, 2013, 62(5): 803-819
|
Lopez-Rodriguez A B, Hennessy E, Murray C L, et al. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer's disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction[J]. Alzheimer's & Dementia, 2021, 17(10): 1735-1755
|
Lee G H, Choi K C. Adverse effects of pesticides on the functions of immune system[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2020, 235: 108789
|
Mendiola A S, Cardona A E. The IL-1β phenomena in neuroinflammatory diseases[J]. Journal of Neural Transmission, 2018, 125(5): 781-795
|
Santhanasabapathy R, Vasudevan S, Anupriya K, et al. Farnesol quells oxidative stress, reactive gliosis and inflammation during acrylamide-induced neurotoxicity: Behavioral and biochemical evidence[J]. Neuroscience, 2015, 308: 212-227
|