成都市典型流域抗生素分布特征及生态风险评价

韩迁, 张玉娇, 赖承钺, 孟旭, 陶红群. 成都市典型流域抗生素分布特征及生态风险评价[J]. 生态毒理学报, 2023, 18(2): 395-409. doi: 10.7524/AJE.1673-5897.20220314001
引用本文: 韩迁, 张玉娇, 赖承钺, 孟旭, 陶红群. 成都市典型流域抗生素分布特征及生态风险评价[J]. 生态毒理学报, 2023, 18(2): 395-409. doi: 10.7524/AJE.1673-5897.20220314001
Han Qian, Zhang Yujiao, Lai Chengyue, Meng Xu, Tao Hongqun. Distribution Characteristics and Ecological Risk Assessment of Antibiotics in Typical River Basins of Chengdu[J]. Asian journal of ecotoxicology, 2023, 18(2): 395-409. doi: 10.7524/AJE.1673-5897.20220314001
Citation: Han Qian, Zhang Yujiao, Lai Chengyue, Meng Xu, Tao Hongqun. Distribution Characteristics and Ecological Risk Assessment of Antibiotics in Typical River Basins of Chengdu[J]. Asian journal of ecotoxicology, 2023, 18(2): 395-409. doi: 10.7524/AJE.1673-5897.20220314001

成都市典型流域抗生素分布特征及生态风险评价

    作者简介: 韩迁(1996—),女,学士,研究方向为水环境中新兴污染物,E-mail: 1585518710@qq.com
    通讯作者: 陶红群, E-mail: lifeissmile@163.com
  • 基金项目:

    长江生态环境保护修复城市驻点跟踪研究(2022-LHYJ-02-0509-01)

  • 中图分类号: X171.5

Distribution Characteristics and Ecological Risk Assessment of Antibiotics in Typical River Basins of Chengdu

    Corresponding author: Tao Hongqun, lifeissmile@163.com
  • Fund Project:
  • 摘要: 本文选取特大城市成都市为研究区域,在该市选择受人类活动、农业种植及畜禽养殖污染影响较为突出的几个流域作为研究对象,采用固相萃取(SPE)-高效液相色谱串联质谱法(HPLC-MS)测定了研究流域地表水中16种磺胺及8种大环内酯共24种抗生素残留,并通过风险商(RQ)法对11种磺胺和5种大环内酯抗生素进行生态风险评价。结果表明,24种抗生素在所有点位均有检出,检出率范围为38.71%~100%,总体浓度范围为0.01~3 249 ng·L-1。其中检出率最高的是磺胺甲恶唑和磺胺甲氧嘧啶,均为100%,其次是磺胺二甲氧嘧啶和磺胺吡啶,为96.77%。整体上看,磺胺类抗生素在锦江流域浓度水平最高,为324.9 ng·L-1,其次为蒲江河流域,为165.0 ng·L-1;大环内酯类抗生素在西江河流域浓度水平最高,为3 249 ng·L-1,其次是锦江流域,为1 029 ng·L-1。生态风险评估结果表明,磺胺甲恶唑和红霉素在研究流域中的RQ均>0.1,处于中风险及以上水平,阿奇霉素仅在西江河流域表现为中风险,其余抗生素在研究流域中均表现为低风险。研究流域中抗生素生态风险程度依次为西江河>锦江>毗河>蒲江河>濛阳河。
  • 加载中
  • Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782
    Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2): 334-342
    Sanderson H, Johnson D J, Reitsma T, et al. Ranking and prioritization of environmental risks of pharmaceuticals in surface waters[J]. Regulatory Toxicology and Pharmacology, 2004, 39(2): 158-183
    汪涛, 杨再福, 陈勇航, 等. 地表水中磺胺类抗生素的生态风险评价[J]. 生态环境学报, 2016, 25(9): 1508-1514

    Wang T, Yang Z F, Chen Y H, et al. Ecological risk assessment for sulfonamides in surface waters[J]. Ecology and Environmental Sciences, 2016, 25(9): 1508-1514(in Chinese)

    Su H C, Liu Y S, Pan C G, et al. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water[J]. Science of the Total Environment, 2018, 616-617: 453-461
    祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展[J]. 岩矿测试, 2014, 33(1): 1-11

    Qi Y J, Liu F. Analysis of antibiotics in groundwater: A review[J]. Rock and Mineral Analysis, 2014, 33(1): 1-11(in Chinese)

    Sapkota A, Sapkota A R, Kucharski M, et al. Aquaculture practices and potential human health risks: Current knowledge and future priorities[J]. Environment International, 2008, 34(8): 1215-1226
    Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2011, 46(3): 272-280
    García-Galán M J, Silvia Díaz-Cruz M, Barceló D, et al. Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides[J]. TrAC Trends in Analytical Chemistry, 2009, 28(6): 804-819
    黄允省. 大环内酯类抗生素的研究新进展[J]. 临床合理用药杂志, 2018, 11(3): 164-165
    王若男, 曹阳, 高超, 等. 沱江干流抗生素污染的时空变化和生态风险评估[J]. 环境化学, 2021, 40(8): 2505-2514

    Wang R N, Cao Y, Gao C, et al. Spatial and seasonal variation of antibiotics and their associated ecological risk in Tuojiang River[J]. Environmental Chemistry, 2021, 40(8): 2505-2514(in Chinese)

    严清, 訾成方, 张怡昕, 等. 重庆主城区水域典型PhACs污染水平及生态风险评估[J]. 环境科学研究, 2013, 26(11): 1178-1185

    Yan Q, Zi C F, Zhang Y X, et al. Pollution level and ecological risk assessment of typical pharmaceutically active compounds in the river basins of main districts of Chongqing[J]. Research of Environmental Sciences, 2013, 26(11): 1178-1185(in Chinese)

    巫明毫, 沙菁洲, 侯永斌, 等. 四川典型水域表层水体抗生素残留特征与风险评估[J]. 中国测试, 2020, 46(10): 78-85

    Wu M H, Sha J Z, Hou Y B, et al. Characteristics and risk assessment of antibiotic residues in surface water of typical waters in Sichuan[J]. China Measurement & Test, 2020, 46(10): 78-85(in Chinese)

    许丹. 四川新药研发及对策研究[D]. 成都: 成都中医药大学, 2014: 39-40
    丁剑楠, 刘舒娇, 邹杰明, 等. 太湖表层水体典型抗生素时空分布和生态风险评价[J]. 环境科学, 2021, 42(4): 1811-1819

    Ding J N, Liu S J, Zou J M, et al. Spatiotemporal distributions and ecological risk assessments of typical antibiotics in surface water of Taihu Lake[J]. Environmental Science, 2021, 42(4): 1811-1819(in Chinese)

    银仁莉. 超声联合臭氧技术降解磺胺甲恶唑的研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 9
    金磊, 姜蕾, 韩琪, 等. 华东地区某水源水中13种磺胺类抗生素的分布特征及人体健康风险评价[J]. 环境科学, 2016, 37(7): 2515-2521

    Jin L, Jiang L, Han Q, et al. Distribution characteristics and health risk assessment of thirteen sulfonamides antibiotics in a drinking water source in East China[J]. Environmental Science, 2016, 37(7): 2515-2521(in Chinese)

    徐浩, 肖湘波, 唐文浩, 等. 海口城区地表水环境中抗生素含量特征研究[J]. 环境科学与技术, 2013, 36(9): 60-65

    Xu H, Xiao X B, Tang W H, et al. Concentration characteristics of antibiotics in urban aquatic environment of Haikou[J]. Environmental Science & Technology, 2013, 36(9): 60-65(in Chinese)

    陈欣仪, 邓杰帆, 陈智锋. 南方某河流型地表水抗生素调查与风险研究[J]. 广东化工, 2018, 45(19): 56-58

    , 65 Chen X Y, Deng J F, Chen Z F. Investigation and risk study on antibiotics in the surface water of a southern river[J]. Guangdong Chemical Industry, 2018, 45(19): 56-58, 65(in Chinese)

    Karthikeyan K G, Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA[J]. Science of the Total Environment, 2006, 361(1-3): 196-207
    朱婷婷, 宋战锋, 尹魁浩, 等. 南方某水库水体中抗生素生态与健康风险研究[J]. 生态毒理学报, 2015, 10(5): 124-131

    Zhu T T, Song Z F, Yin K H, et al. Assessments of ecological and health risk induced by antibiotics in source water of a reservoir in a southern city[J]. Asian Journal of Ecotoxicology, 2015, 10(5): 124-131(in Chinese)

    刘晓晖. 洞庭湖流域水环境中典型抗生素污染特征、来源及风险评估[D]. 济南: 山东师范大学, 2017: 2,36
    洪蕾洁, 石璐, 张亚雷, 等. 固相萃取-高效液相色谱法同时测定水体中的10种磺胺类抗生素[J]. 环境科学, 2012, 33(2): 652-657

    Hong L J, Shi L, Zhang Y L, et al. Simultaneous determination of 10 sulfonamide antibiotics in water by solid-phase extraction and high performance liquid chromatography[J]. Environmental Science, 2012, 33(2): 652-657(in Chinese)

    Chen K, Zhou J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 2014, 95: 604-612
    Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2011, 46(3): 272-280
    薛保铭, 杨惟薇, 王英辉, 等. 钦州湾水体中磺胺类抗生素污染特征与生态风险[J]. 中国环境科学, 2013, 33(9): 1664-1669

    Xue B M, Yang W W, Wang Y H, et al. Occurrence, distribution and ecological risks of sulfonamides in the Qinzhou Bay, South China[J]. China Environmental Science, 2013, 33(9): 1664-1669(in Chinese)

    杨俊, 王汉欣, 吴韵斐, 等. 苏州市水环境中典型抗生素污染特征及生态风险评估[J]. 生态环境学报, 2019, 28(2): 359-368

    Yang J, Wang H X, Wu Y F, et al. Occurrence, distribution and risk assessment of typical antibiotics in the aquatic environment of Suzhou City[J]. Ecology and Environmental Sciences, 2019, 28(2): 359-368(in Chinese)

    刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价[J]. 环境科学, 2019, 40(5): 2094-2100

    Liu X, Wang Z, Wang X L, et al. Status of antibiotic contamination and ecological risks assessment of several typical Chinese surface-water environments[J]. Environmental Science, 2019, 40(5): 2094-2100(in Chinese)

    European Commission (EC). European Commission Technical Guidance Document in Support of Commission Directive 93//67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No.1488/94 on Risk Assessment for Existing Substance, Part Ⅱ[R]. Brussels: European Commission, 2003: 100-103
    Vryzas Z, Alexoudis C, Vassiliou G, et al. Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece[J]. Ecotoxicology and Environmental Safety, 2011, 74(2): 174-181
    Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2): 334-342
    Pro J, Ortiz J A, Boleas S, et al. Effect assessment of antimicrobial pharmaceuticals on the aquatic plant Lemna minor[J]. Bulletin of Environmental Contamination and Toxicology, 2003, 70(2): 290-295
    Białk-Bielińska A, Stolte S, Arning J, et al. Ecotoxicity evaluation of selected sulfonamides[J]. Chemosphere, 2011, 85(6): 928-933
    Brain R A, Johnson D J, Richards S M, et al. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test[J]. Environmental Toxicology and Chemistry, 2004, 23(2): 371-382
    Ferrari B, Mons R, Vollat B, et al. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment?[J]. Environmental Toxicology and Chemistry, 2004, 23(5): 1344-1354
    Lu G, Li Z, Liu J. Effects of selected pharmaceuticals on growth, reproduction and feeding of Daphnia magna[J]. Fresenius Environmental Bulletin, 2013, 22(9): 2583-2589
    Quinn B, Gagné F, Blaise C. An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata[J]. Science of the Total Environment, 2008, 389(2-3): 306-314
    Park K, Kwak I S. Gene expression of ribosomal protein mRNA in Chironomus riparius: Effects of endocrine disruptor chemicals and antibiotics[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2012, 156(2): 113-120
    吴天宇, 李江, 杨爱江, 等. 赤水河流域水体抗生素污染特征及风险评价[J]. 环境科学, 2022, 43(1): 210-219

    Wu T Y, Li J, Yang A J, et al. Characteristics and risk assessment of antibiotic contamination in Chishui River Basin, Guizhou Province, China[J]. Environmental Science, 2022, 43(1): 210-219(in Chinese)

  • 加载中
计量
  • 文章访问数:  1756
  • HTML全文浏览数:  1756
  • PDF下载数:  94
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-14
韩迁, 张玉娇, 赖承钺, 孟旭, 陶红群. 成都市典型流域抗生素分布特征及生态风险评价[J]. 生态毒理学报, 2023, 18(2): 395-409. doi: 10.7524/AJE.1673-5897.20220314001
引用本文: 韩迁, 张玉娇, 赖承钺, 孟旭, 陶红群. 成都市典型流域抗生素分布特征及生态风险评价[J]. 生态毒理学报, 2023, 18(2): 395-409. doi: 10.7524/AJE.1673-5897.20220314001
Han Qian, Zhang Yujiao, Lai Chengyue, Meng Xu, Tao Hongqun. Distribution Characteristics and Ecological Risk Assessment of Antibiotics in Typical River Basins of Chengdu[J]. Asian journal of ecotoxicology, 2023, 18(2): 395-409. doi: 10.7524/AJE.1673-5897.20220314001
Citation: Han Qian, Zhang Yujiao, Lai Chengyue, Meng Xu, Tao Hongqun. Distribution Characteristics and Ecological Risk Assessment of Antibiotics in Typical River Basins of Chengdu[J]. Asian journal of ecotoxicology, 2023, 18(2): 395-409. doi: 10.7524/AJE.1673-5897.20220314001

成都市典型流域抗生素分布特征及生态风险评价

    通讯作者: 陶红群, E-mail: lifeissmile@163.com
    作者简介: 韩迁(1996—),女,学士,研究方向为水环境中新兴污染物,E-mail: 1585518710@qq.com
  • 成都市环境保护科学研究院, 成都 610000
基金项目:

长江生态环境保护修复城市驻点跟踪研究(2022-LHYJ-02-0509-01)

摘要: 本文选取特大城市成都市为研究区域,在该市选择受人类活动、农业种植及畜禽养殖污染影响较为突出的几个流域作为研究对象,采用固相萃取(SPE)-高效液相色谱串联质谱法(HPLC-MS)测定了研究流域地表水中16种磺胺及8种大环内酯共24种抗生素残留,并通过风险商(RQ)法对11种磺胺和5种大环内酯抗生素进行生态风险评价。结果表明,24种抗生素在所有点位均有检出,检出率范围为38.71%~100%,总体浓度范围为0.01~3 249 ng·L-1。其中检出率最高的是磺胺甲恶唑和磺胺甲氧嘧啶,均为100%,其次是磺胺二甲氧嘧啶和磺胺吡啶,为96.77%。整体上看,磺胺类抗生素在锦江流域浓度水平最高,为324.9 ng·L-1,其次为蒲江河流域,为165.0 ng·L-1;大环内酯类抗生素在西江河流域浓度水平最高,为3 249 ng·L-1,其次是锦江流域,为1 029 ng·L-1。生态风险评估结果表明,磺胺甲恶唑和红霉素在研究流域中的RQ均>0.1,处于中风险及以上水平,阿奇霉素仅在西江河流域表现为中风险,其余抗生素在研究流域中均表现为低风险。研究流域中抗生素生态风险程度依次为西江河>锦江>毗河>蒲江河>濛阳河。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回