从内质网应激的角度探究微囊藻毒素-LR对斑马鱼离体肝细胞脂代谢的影响

张丹丹, 杨慧, 欧阳康, 况宇, 汤蓉, 李大鹏, 李莉. 从内质网应激的角度探究微囊藻毒素-LR对斑马鱼离体肝细胞脂代谢的影响[J]. 生态毒理学报, 2023, 18(2): 410-419. doi: 10.7524/AJE.1673-5897.20220324002
引用本文: 张丹丹, 杨慧, 欧阳康, 况宇, 汤蓉, 李大鹏, 李莉. 从内质网应激的角度探究微囊藻毒素-LR对斑马鱼离体肝细胞脂代谢的影响[J]. 生态毒理学报, 2023, 18(2): 410-419. doi: 10.7524/AJE.1673-5897.20220324002
Zhang Dandan, Yang Hui, Ouyang Kang, Kuang Yu, Tang Rong, Li Dapeng, Li Li. Effects of Microcystin-LR on Lipid Metabolism in Zebrafish Liver Cells via Endoplasmic Reticulum Stress Pathway[J]. Asian journal of ecotoxicology, 2023, 18(2): 410-419. doi: 10.7524/AJE.1673-5897.20220324002
Citation: Zhang Dandan, Yang Hui, Ouyang Kang, Kuang Yu, Tang Rong, Li Dapeng, Li Li. Effects of Microcystin-LR on Lipid Metabolism in Zebrafish Liver Cells via Endoplasmic Reticulum Stress Pathway[J]. Asian journal of ecotoxicology, 2023, 18(2): 410-419. doi: 10.7524/AJE.1673-5897.20220324002

从内质网应激的角度探究微囊藻毒素-LR对斑马鱼离体肝细胞脂代谢的影响

    作者简介: 张丹丹(1995—),女,硕士研究生,研究方向为水生态毒理学,E-mail: 2817686186@qq.com
    通讯作者: 李莉, E-mail: foreverlili78@mail.hzau.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(32071621);国家重点研发计划课题(2019YFD0900303);农业部现代农业产业技术体系(CARS-45-24)

  • 中图分类号: X171.5

Effects of Microcystin-LR on Lipid Metabolism in Zebrafish Liver Cells via Endoplasmic Reticulum Stress Pathway

    Corresponding author: Li Li, foreverlili78@mail.hzau.edu.cn
  • Fund Project:
  • 摘要: 为了探究微囊藻毒素-LR(MC-LR)对斑马鱼离体肝细胞内质网应激(ERs)和脂质代谢的影响及机制,本实验以斑马鱼肝细胞系(ZFL)为实验材料,使用不同浓度梯度MC-LR(0、10、20、40、80和160 μg·mL-1)分别进行24 h暴露,在明确细胞活力和半致死浓度(49.3 μg·mL-1)的基础上,选定10 μg·mL-1为暴露浓度,研究细胞中总胆固醇(TC)和甘油三酯(TG)的含量及ERs信号分子、下游因子以及与脂质代谢相关的基因表达情况,并利用ERs抑制剂牛磺熊去氧胆酸(TUDCA)进行机制验证。结果表明,和对照组相比,MC-LR(10 μg·mL-1)暴露诱导TC、TG含量显著上升,未折叠蛋白反应(UPR)途径相关基因(包括atf6eif2ak3ern1xbp1s)以及下游脂质代谢相关基因(srebf1fasnacacascdsrebf2hmgcrahmgcs1)的mRNA表达显著上调;而TUDCA处理导致TC、TG含量显著下降,且UPR和脂类合成途径相关基因表达水平显著性下调。相对地,在TUDCA预处理组中,TC、TG含量、UPR和脂类合成途径相关基因表达相对于MC-LR处理组显著下降,但和对照组相比无显著差异。上述结果表明,MC-LR可通过影响肝脏脂质合成相关基因表达对体外ZFL细胞脂质代谢产生影响,其机制是MC-LR会诱导ERs和固醇调控元件结合蛋白(SREBP)活化(srebf1srebf2),进而驱动下游脂质和胆固醇代谢合成基因(fasnacacascdhmgcs1hmgcra)的上调,最终导致肝脏脂质的蓄积。TUDCA预暴露组相应检测指标的恢复进一步验证了ERs在MC-LR引起的斑马鱼肝脏脂质代谢异常中的作用。本研究的发现为MC-LR肝毒性提供了机制上的见解,并由此可外推到MC对人健康的潜在影响。
  • 加载中
  • van Apeldoorn M E, van Egmond H P, Speijers G J A, et al. Toxins of cyanobacteria[J]. Molecular Nutrition & Food Research, 2007, 51(1): 7-60
    汪洋, 李樾, 冯悦, 等. 蓝藻毒素的类型及其产毒基因[J]. 生态学杂志, 2017, 36(2): 517-523

    Wang Y, Li Y, Feng Y, et al. Research progress on cyanobacterial toxins and the cyanotoxin synthetase gene[J]. Chinese Journal of Ecology, 2017, 36(2): 517-523(in Chinese)

    侯杰. 微囊藻毒素-LR对斑马鱼生殖和生长发育的影响及其机制[D]. 武汉: 华中农业大学, 2017: 1-15
    Hou J, Li L, Xue T, et al. Hepatic positive and negative antioxidant responses in zebrafish after intraperitoneal administration of toxic microcystin-LR[J]. Chemosphere, 2015, 120: 729-736
    Lin W, Hou J, Guo H H, et al. The synergistic effects of waterborne microcystin-LR and nitrite on hepatic pathological damage, lipid peroxidation and antioxidant responses of male zebrafish[J]. Environmental Pollution, 2018, 235: 197-206
    Li L, Xie P, Lei H H, et al. Renal accumulation and effects of intraperitoneal injection of extracted microcystins in omnivorous crucian carp (Carassius auratus)[J]. Toxicon: Official Journal of the International Society on Toxinology, 2013, 70: 62-69
    Qiu T, Xie P, Liu Y, et al. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat[J]. Toxicology, 2009, 257(1-2): 86-94
    Hou J, Li L, Wu N, et al. Reproduction impairment and endocrine disruption in female zebrafish after long-term exposure to MC-LR: A life cycle assessment[J]. Environmental Pollution, 2016, 208(Pt B): 477-485
    Yang L P, Guo H H, Kuang Y, et al. Neurotoxicity induced by combined exposure of microcystin-LR and nitrite in male zebrafish (Danio rerio): Effects of oxidant-antioxidant system and neurotransmitter system[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2022, 253: 109248
    Lin W, Hou J, Guo H H, et al. Dualistic immunomodulation of sub-chronic microcystin-LR exposure on the innate-immune defense system in male zebrafish[J]. Chemosphere, 2017, 183: 315-322
    Nishiwaki-Matsushima R, Fujiki H, Harada K I, et al. The role of arginine in interactions of microcystins with protein phosphatases 1 and 2a[J]. Bioorganic & Medicinal Chemistry Letters, 1992, 2(7): 673-676
    Mezhoud K, Praseuth D, Puiseux-Dao S, et al. Global quantitative analysis of protein expression and phosphorylation status in the liver of the medaka fish (Oryzias latipes) exposed to microcystin-LR I. Balneation study[J]. Aquatic Toxicology, 2008, 86(2): 166-175
    Ding W X, Shen H M, Ong C N. Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocytes[J]. Hepatology, 2000, 32(3): 547-555
    Prieto A I, Pichardo S, Jos Á, et al. Time-dependent oxidative stress responses after acute exposure to toxic cyanobacterial cells containing microcystins in tilapia fish (Oreochromis niloticus) under laboratory conditions[J]. Aquatic Toxicology, 2007, 84(3): 337-345
    Ding W X, Ong C N. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity[J]. FEMS Microbiology Letters, 2003, 220(1): 1-7
    Žegura B, Zajc I, Lah T T, et al. Patterns of microcystin-LR induced alteration of the expression of genes involved in response to DNA damage and apoptosis[J]. Toxicon, 2008, 51(4): 615-623
    Amado L L, Monserrat J M. Oxidative stress generation by microcystins in aquatic animals: Why and how[J]. Environment International, 2010, 36(2): 226-235
    Li L, Xie P, Chen J. In vivo studies on toxin accumulation in liver and ultrastructural changes of hepatocytes of the phytoplanktivorous bighead carp i.p.-injected with extracted microcystins[J]. Toxicon, 2005, 46(5): 533-545
    Zhang F, Lee J, Liang S, et al. Cyanobacteria blooms and non-alcoholic liver disease: Evidence from a county level ecological study in the United States[J]. Environmental Health: A Global Access Science Source, 2015, 14: 41
    Zhao Y Y, Xue Q J, Su X M, et al. Microcystin-LR induced thyroid dysfunction and metabolic disorders in mice[J]. Toxicology, 2015, 328: 135-141
    He J, Li G Y, Chen J, et al. Prolonged exposure to low-dose microcystin induces nonalcoholic steatohepatitis in mice: A systems toxicology study[J]. Archives of Toxicology, 2017, 91(1): 465-480
    Duan Y F, Zeng S, Lu Z J, et al. Responses of lipid metabolism and lipidomics in the hepatopancreas of Pacific white shrimp Litopenaeus vannamei to microcystin-LR exposure[J]. Ecotoxicology and Environment Safety, 2021, 228: 113030
    Zhang Z Y, Zhang X X, Wu B, et al. Comprehensive insights into microcystin-LR effects on hepatic lipid metabolism using cross-omics technologies[J]. Journal of Hazardous Materials, 2016, 315: 126-134
    He J, Chen J, Wu L Y, et al. Metabolic response to oral microcystin-LR exposure in the rat by NMR-based metabonomic study[J]. Journal of Proteome Research, 2012, 11(12): 5934-5946
    Alverca E, Andrade M, Dias E, et al. Morphological and ultrastructural effects of microcystin-LR from Microcystis aeruginosa extract on a kidney cell line[J]. Toxicon, 2009, 54(3): 283-294
    Babour A, Bicknell A A, Tourtellotte J, et al. A surveillance pathway monitors the fitness of the endoplasmic reticulum to control its inheritance[J]. Cell, 2010, 142(2): 256-269
    Hotamisligil G S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease[J]. Cell, 2010, 140(6): 900-917
    Cai F, Liu J, Li C R, et al. Critical role of endoplasmic reticulum stress in cognitive impairment induced by microcystin-LR[J]. International Journal of Molecular Sciences, 2015, 16(12): 28077-28086
    Huang P, Zheng Y F, Xu L H. Oral administration of cyanobacterial bloom extract induced the altered expression of the PP2A, Bax, and Bcl-2 in mice[J]. Environmental Toxicology, 2008, 23(6): 688-693
    Christen V, Meili N, Fent K. Microcystin-LR induces endoplasmatic reticulum stress and leads to induction of NFκB, interferon-alpha, and tumor necrosis factor-alpha[J]. Environmental Science & Technology, 2013, 47(7): 3378-3385
    Colgan S M, Tang D M, Werstuck G H, et al. Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2[J]. The International Journal of Biochemistry & Cell Biology, 2007, 39(10): 1843-1851
    Kammoun H L, Chabanon H, Hainault I, et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice[J]. The Journal of Clinical Investigation, 2009, 119(5): 1201-1215
    Tocher D R. Metabolism and functions of lipids and fatty acids in teleost fish[J]. Reviews in Fisheries Science, 2003, 11(2): 107-184
    Deng T F, Xie J K, Ge H T, et al. Tauroursodeoxycholic acid (TUDCA) enhanced intracytoplasmic sperm injection (ICSI) embryo developmental competence by ameliorating endoplasmic reticulum (ER) stress and inhibiting apoptosis[J]. Journal of Assisted Reproduction and Genetics, 2020, 37(1): 119-126
    Vettorazzi J F, Kurauti M A, Soares G M, et al. Bile acid TUDCA improves insulin clearance by increasing the expression of insulin-degrading enzyme in the liver of obese mice[J]. Scientific Reports, 2017, 7(1): 14876
    Sozio M S, Liangpunsakul S, Crabb D. The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis[J]. Seminars in Liver Disease, 2010, 30(4): 378-390
    Li X Y, Chung I K, Kim J I, et al. Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions[J]. Toxicon: Official Journal of the International Society on Toxinology, 2004, 44(8): 821-827
    Li L, Xie P, Li S X, et al. Sequential ultrastructural and biochemical changes induced in vivo by the hepatotoxic microcystins in liver of the phytoplanktivorous silver carp Hypophthalmichthys molitrix[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2007, 146(3): 357-367
    Lee A H, Iwakoshi N N, Glimcher L H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response[J]. Molecular and Cellular Biology, 2003, 23(21): 7448-7459
    Kuo Y T, Lin T H, Chen W L, et al. Alpha-lipoic acid induces adipose triglyceride lipase expression and decreases intracellular lipid accumulation in HepG2 cells[J]. European Journal of Pharmacology, 2012, 692(1-3): 10-18
    Horton J D. Sterol regulatory element-binding proteins: Transcriptional activators of lipid synthesis[J]. Biochemical Society Transactions, 2002, 30(Pt 6): 1091-1095
    Passeri M J, Cinaroglu A, Gao C, et al. Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation[J]. Hepatology, 2009, 49(2): 443-452
    Lhoták S, Sood S, Brimble E, et al. ER stress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death[J]. American Journal of Physiology Renal Physiology, 2012, 303(2): F266-F278
    Lee J S, Mendez R, Heng H H, et al. Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet formation[J]. American Journal of Translational Research, 2012, 4(1): 102-113
    Kim J Y, Garcia-Carbonell R, Yamachika S, et al. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P[J]. Cell, 2018, 175(1): 133-145.e15
  • 加载中
计量
  • 文章访问数:  1566
  • HTML全文浏览数:  1566
  • PDF下载数:  83
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-24
张丹丹, 杨慧, 欧阳康, 况宇, 汤蓉, 李大鹏, 李莉. 从内质网应激的角度探究微囊藻毒素-LR对斑马鱼离体肝细胞脂代谢的影响[J]. 生态毒理学报, 2023, 18(2): 410-419. doi: 10.7524/AJE.1673-5897.20220324002
引用本文: 张丹丹, 杨慧, 欧阳康, 况宇, 汤蓉, 李大鹏, 李莉. 从内质网应激的角度探究微囊藻毒素-LR对斑马鱼离体肝细胞脂代谢的影响[J]. 生态毒理学报, 2023, 18(2): 410-419. doi: 10.7524/AJE.1673-5897.20220324002
Zhang Dandan, Yang Hui, Ouyang Kang, Kuang Yu, Tang Rong, Li Dapeng, Li Li. Effects of Microcystin-LR on Lipid Metabolism in Zebrafish Liver Cells via Endoplasmic Reticulum Stress Pathway[J]. Asian journal of ecotoxicology, 2023, 18(2): 410-419. doi: 10.7524/AJE.1673-5897.20220324002
Citation: Zhang Dandan, Yang Hui, Ouyang Kang, Kuang Yu, Tang Rong, Li Dapeng, Li Li. Effects of Microcystin-LR on Lipid Metabolism in Zebrafish Liver Cells via Endoplasmic Reticulum Stress Pathway[J]. Asian journal of ecotoxicology, 2023, 18(2): 410-419. doi: 10.7524/AJE.1673-5897.20220324002

从内质网应激的角度探究微囊藻毒素-LR对斑马鱼离体肝细胞脂代谢的影响

    通讯作者: 李莉, E-mail: foreverlili78@mail.hzau.edu.cn
    作者简介: 张丹丹(1995—),女,硕士研究生,研究方向为水生态毒理学,E-mail: 2817686186@qq.com
  • 1. 华中农业大学水产学院, 武汉 430070;
  • 2. 长江经济带大宗水生生物产业绿色发展教育部工程研究中心, 武汉 430070;
  • 3. 池塘健康养殖湖北省工程实验室, 武汉 430070;
  • 4. 淡水水产健康养殖湖北省协同创新中心, 武汉 430070
基金项目:

国家自然科学基金资助项目(32071621);国家重点研发计划课题(2019YFD0900303);农业部现代农业产业技术体系(CARS-45-24)

摘要: 为了探究微囊藻毒素-LR(MC-LR)对斑马鱼离体肝细胞内质网应激(ERs)和脂质代谢的影响及机制,本实验以斑马鱼肝细胞系(ZFL)为实验材料,使用不同浓度梯度MC-LR(0、10、20、40、80和160 μg·mL-1)分别进行24 h暴露,在明确细胞活力和半致死浓度(49.3 μg·mL-1)的基础上,选定10 μg·mL-1为暴露浓度,研究细胞中总胆固醇(TC)和甘油三酯(TG)的含量及ERs信号分子、下游因子以及与脂质代谢相关的基因表达情况,并利用ERs抑制剂牛磺熊去氧胆酸(TUDCA)进行机制验证。结果表明,和对照组相比,MC-LR(10 μg·mL-1)暴露诱导TC、TG含量显著上升,未折叠蛋白反应(UPR)途径相关基因(包括atf6eif2ak3ern1xbp1s)以及下游脂质代谢相关基因(srebf1fasnacacascdsrebf2hmgcrahmgcs1)的mRNA表达显著上调;而TUDCA处理导致TC、TG含量显著下降,且UPR和脂类合成途径相关基因表达水平显著性下调。相对地,在TUDCA预处理组中,TC、TG含量、UPR和脂类合成途径相关基因表达相对于MC-LR处理组显著下降,但和对照组相比无显著差异。上述结果表明,MC-LR可通过影响肝脏脂质合成相关基因表达对体外ZFL细胞脂质代谢产生影响,其机制是MC-LR会诱导ERs和固醇调控元件结合蛋白(SREBP)活化(srebf1srebf2),进而驱动下游脂质和胆固醇代谢合成基因(fasnacacascdhmgcs1hmgcra)的上调,最终导致肝脏脂质的蓄积。TUDCA预暴露组相应检测指标的恢复进一步验证了ERs在MC-LR引起的斑马鱼肝脏脂质代谢异常中的作用。本研究的发现为MC-LR肝毒性提供了机制上的见解,并由此可外推到MC对人健康的潜在影响。

English Abstract

参考文献 (45)

返回顶部

目录

/

返回文章
返回