城市居民CO2实时暴露特征与家庭个体差异

王玉琼, 李云桂, 王金泽, 刘蕊嘉, 杜伟. 城市居民CO2实时暴露特征与家庭个体差异[J]. 生态毒理学报, 2023, 18(2): 384-394. doi: 10.7524/AJE.1673-5897.20220317003
引用本文: 王玉琼, 李云桂, 王金泽, 刘蕊嘉, 杜伟. 城市居民CO2实时暴露特征与家庭个体差异[J]. 生态毒理学报, 2023, 18(2): 384-394. doi: 10.7524/AJE.1673-5897.20220317003
Wang Yuqiong, Li Yungui, Wang Jinze, Liu Ruijia, Du Wei. Real-time Evaluation of Domestic Exposure to CO2 in Sichuan, China: Space Function-associated Characteristics and Variations among Family Members[J]. Asian journal of ecotoxicology, 2023, 18(2): 384-394. doi: 10.7524/AJE.1673-5897.20220317003
Citation: Wang Yuqiong, Li Yungui, Wang Jinze, Liu Ruijia, Du Wei. Real-time Evaluation of Domestic Exposure to CO2 in Sichuan, China: Space Function-associated Characteristics and Variations among Family Members[J]. Asian journal of ecotoxicology, 2023, 18(2): 384-394. doi: 10.7524/AJE.1673-5897.20220317003

城市居民CO2实时暴露特征与家庭个体差异

    作者简介: 王玉琼(1997—),女,硕士研究生,研究方向为环境健康,E-mail: 2580044085@qq.com
    通讯作者: 李云桂, E-mail: liyungui@swust.edu.cn
  • 基金项目:

    四川省国际科技创新合作项目(2021YFH0046);国家卫生健康委员会核技术医学转化重点实验室开放课题(2021HYX030)

  • 中图分类号: X171.5

Real-time Evaluation of Domestic Exposure to CO2 in Sichuan, China: Space Function-associated Characteristics and Variations among Family Members

    Corresponding author: Li Yungui, liyungui@swust.edu.cn
  • Fund Project:
  • 摘要: CO2是室内空气质量的重要指标,然而有关居民个体CO2实时暴露研究鲜有报道。为探究城市居民CO2实时暴露特征与家庭个体差异,本研究以四川省32个城市居民家庭(111人)为研究对象,利用CO2实时监测仪监测居民主要生活微环境(厨房、客厅、卧室、室外、办公室和车内)CO2实时浓度,通过详细问卷调查获得居民24 h活动轨迹,绘制CO2实时暴露曲线、分析家庭个体暴露差异、计算不同微环境对居民CO2暴露贡献以及暴露强度。结果表明,13.5%的受试居民存在CO2过度暴露风险(日均暴露浓度>1 000 mg·L-1);所有受试居民均存在短期CO2高浓度暴露风险,日内暴露于1 000 mg·L-1以上浓度累计时长为5.4~11.2 h。受试居民CO2暴露特征存在显著的家庭个体差异。日均暴露浓度与年龄呈正相关,并且存在性别差异。老年、中年和儿童的日均暴露浓度分别为(781±387)、(709±403)和(693±385) mg·L-1。家庭成员中,男童日均暴露浓度高于女童,而中年和老年群体中女性日均暴露浓度均高于男性,控制卧室、客厅、车内和厨房微环境中的CO2浓度可有效减少居民个体CO2暴露风险。本研究为居民CO2实时暴露风险研究和过高浓度暴露风险防控提供参考数据。
  • 加载中
  • 赵姗. “双碳”战略引领绿色发展道路[N]. 中国经济时报, 2021-12-31(1)
    Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351(6324): 304-306
    Delangiz N, Varjovi M B, Lajayer B A, et al. The potential of biotechnology for mitigation of greenhouse gasses effects: Solutions, challenges, and future perspectives[J]. Arabian Journal of Geosciences, 2019, 12(5): 174
    凌定元. 温室效应危害及治理措施[J]. 纳税, 2018(13): 252
    Robertson D S. The rise in the atmospheric concentration of carbon dioxide and the effects on human health[J]. Medical Hypotheses, 2001, 56(4): 513-518
    Satish U, Mendell M J, Shekhar K, et al. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance[J]. Environmental Health Perspectives, 2012, 120(12): 1671-1677
    国家质量监督检验检疫总局, 卫生部. 室内空气质量标准: GB/T 18883—2002[S]. 北京: 中国标准出版社, 2003
    曹聪霄, 邓辉, 庞锋, 等. 低浓度二氧化碳吸附材料及其再生技术研究[C]//中国化学会.·第一届全国二氧化碳资源化利用学术会议摘要集. 天津: 中国化学会, 2019: 163
    Allen J G, MacNaughton P, Satish U, et al. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: A controlled exposure study of green and conventional office environments[J]. Environmental Health Perspectives, 2016, 124(6): 805-812
    Zhang J, Pang L P, Cao X D, et al. The effects of elevated carbon dioxide concentration and mental workload on task performance in an enclosed environmental chamber[J]. Building and Environment, 2020, 178: 106938
    Wu J D, Weng J T, Xia B, et al. The synergistic effect of PM2.5 and CO2 concentrations on occupant satisfaction and work productivity in a meeting room[J]. International Journal of Environmental Research and Public Health, 2021, 18(8): 4109
    Kozielska B, Mainka A,Żak M, et al. Indoor air quality in residential buildings in Upper Silesia, Poland[J]. Building and Environment, 2020, 177: 106914
    Gabriel M F, Felgueiras F, Batista R, et al. Indoor environmental quality in households of families with infant twins under 1 year of age living in Porto[J]. Environmental Research, 2021, 198: 110477
    Gall E T, Cheung T, Luhung I, et al. Real-time monitoring of personal exposures to carbon dioxide[J]. Building and Environment, 2016, 104: 59-67
    González Serrano V, Licina D. Longitudinal assessment of personal air pollution clouds in ten home and office environments[J]. Indoor Air, 2022, 32(2): e12993
    赵彤, 孙江, 刘继凤. 室内空气污染现状及处理方法的探讨[J]. 环境科学与管理, 2011, 36(6): 48-49

    , 88 Zhao T, Sun J, Liu J F. Discussion on status quo of indoor air pollution and disposal method[J]. Environmental Science and Management, 2011, 36(6): 48-49, 88(in Chinese)

    王春梅, 陶晶, 李婷, 等. 北京城市居民冬季个体暴露PM2.5中多环芳烃特征与室外的差异研究[J]. 环境与健康杂志, 2021, 38(3): 215-219

    Wang C M, Tao J, Li T, et al. Differences on characteristics between personal and outdoor exposure to polycyclic aromatic hydrocarbons in PM2.5 for urban residents in winter in Beijing[J]. Journal of Environment and Health, 2021, 38(3): 215-219(in Chinese)

    Yun X, Shen G F, Shen H Z, et al. Residential solid fuel emissions contribute significantly to air pollution and associated health impacts in China[J]. Science Advances, 2020, 6(44): eaba7621
    Mentese S, Tasdibi D. Assessment of residential exposure to volatile organic compounds (VOCs) and carbon dioxide (CO2)[J]. Global Nest Journal, 2017, 19(4): 726-732
    Li Y J, Liu X L, Men Y T, et al. Indoor coal combustion for heating exacerbates CO2 exposure approaching harmful levels[J]. Environmental Science & Technology Letters, 2021, 8(10): 861-866
    Moreno T, Pacitto A, Fernández A, et al. Vehicle interior air quality conditions when travelling by taxi[J]. Environmental Research, 2019, 172: 529-542
    Gun K H, Yu Y H, Yang X P, et al. Carbon dioxide (CO2) concentrations and activated carbon fiber filters in passenger vehicles in urban areas of Jeonju, Korea[J]. Carbon Letters, 2018, 26(1): 74-80
    Hudda N, Fruin S A. Carbon dioxide accumulation inside vehicles: The effect of ventilation and driving conditions[J]. Science of the Total Environment, 2018, 610-611: 1448-1456
    Magaña V C, Scherz W D, Seepold R, et al. The effects of the driver's mental state and passenger compartment conditions on driving performance and driving stress[J]. Sensors, 2020, 20(18): 5274
    Shubhanka B, Ambade B. A critical comparative study of indoor air pollution from household cooking fuels and its effect on health[J]. Oriental Journal of Chemistry, 2016, 32(1): 473-480
    Shen G F, Ainiwaer S, Zhu Y Q, et al. Quantifying source contributions for indoor CO2 and gas pollutants based on the highly resolved sensor data[J]. Environmental Pollution, 2020, 267: 115493
    Batog P, Badura M. Dynamic of changes in carbon dioxide concentration in bedrooms[J]. Procedia Engineering, 2013, 57: 175-182
    Xiong J, Lan L, Lian Z W, et al. Associations of bedroom temperature and ventilation with sleep quality[J]. Science and Technology for the Built Environment, 2020, 26(9): 1274-1284
    Mishra A K, van Ruitenbeek A M, Loomans M G L C, et al. Window/door opening-mediated bedroom ventilation and its impact on sleep quality of healthy, young adults[J]. Indoor Air, 2018, 28(2): 339-351
    王贝贝, 段小丽, 蒋秋静, 等. 我国北方典型地区居民呼吸暴露参数研究[J]. 环境科学研究, 2010, 23(11): 1421-1427

    Wang B B, Duan X L, Jiang Q J, et al. Inhalation exposure factors of residents in a typical region in Northern China[J]. Research of Environmental Sciences, 2010, 23(11): 1421-1427(in Chinese)

    Boniardi L, Dons E, Longhi F, et al. Personal exposure to equivalent black carbon in children in Milan, Italy: Time-activity patterns and predictors by season[J]. Environmental Pollution, 2021, 274: 116530
    Pegas P N, Alves C A, Evtyugina M G, et al. Indoor air quality in elementary schools of Lisbon in spring[J]. Environmental Geochemistry and Health, 2011, 33(5): 455-468
    Almeida-Silva M, Wolterbeek H T, Almeida S M. Elderly exposure to indoor air pollutants[J]. Atmospheric Environment, 2014, 85: 54-63
    蔡来胜, 刘春雁, 刘刚. 活性炭纤维及其在空气净化器中的应用[J]. 上海纺织科技, 2003, 31(4): 10-12

    Cai L S, Liu C Y, Liu G. Properties and applications in the air cleaner of activated carbon fiber[J]. Shanghai Textile Science & Technology, 2003, 31(4): 10-12(in Chinese)

    爱稀奇. 这款空气净化器, 自带绿植吸收二氧化碳[J]. 五金科技, 2018(6): 82-83
    Zhong M, Wu C Z, Hunt J D. Gender differences in activity participation, time-of-day and duration choices: New evidence from Calgary[J]. Transportation Planning and Technology, 2012, 35(2): 175-190
    Kim H, Kim J S, Lee J, et al. The effect of ventilation on reducing the concentration of hazardous substances in the indoor air of a Korean living environment[J]. Analytical Science & Technology, 2020, 33(1): 49-57
    胡园园, 王志荣, 蒋军成. 自然通风条件下室内CO2扩散浓度变化的数值模拟[J]. 南京工业大学学报(自然科学版), 2012, 34(3): 129-133 Hu Y Y, Wang Z R, Jiang J C. Numerical simulation of indoor concentration change of carbon dioxide dispersion under natural ventilation condition[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(3): 129-133(in Chinese)
  • 加载中
计量
  • 文章访问数:  1271
  • HTML全文浏览数:  1271
  • PDF下载数:  84
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-17
王玉琼, 李云桂, 王金泽, 刘蕊嘉, 杜伟. 城市居民CO2实时暴露特征与家庭个体差异[J]. 生态毒理学报, 2023, 18(2): 384-394. doi: 10.7524/AJE.1673-5897.20220317003
引用本文: 王玉琼, 李云桂, 王金泽, 刘蕊嘉, 杜伟. 城市居民CO2实时暴露特征与家庭个体差异[J]. 生态毒理学报, 2023, 18(2): 384-394. doi: 10.7524/AJE.1673-5897.20220317003
Wang Yuqiong, Li Yungui, Wang Jinze, Liu Ruijia, Du Wei. Real-time Evaluation of Domestic Exposure to CO2 in Sichuan, China: Space Function-associated Characteristics and Variations among Family Members[J]. Asian journal of ecotoxicology, 2023, 18(2): 384-394. doi: 10.7524/AJE.1673-5897.20220317003
Citation: Wang Yuqiong, Li Yungui, Wang Jinze, Liu Ruijia, Du Wei. Real-time Evaluation of Domestic Exposure to CO2 in Sichuan, China: Space Function-associated Characteristics and Variations among Family Members[J]. Asian journal of ecotoxicology, 2023, 18(2): 384-394. doi: 10.7524/AJE.1673-5897.20220317003

城市居民CO2实时暴露特征与家庭个体差异

    通讯作者: 李云桂, E-mail: liyungui@swust.edu.cn
    作者简介: 王玉琼(1997—),女,硕士研究生,研究方向为环境健康,E-mail: 2580044085@qq.com
  • 1. 西南科技大学环境与资源学院环境工程系, 绵阳 621010;
  • 2. 国家卫生健康委员会核技术医学转化重点实验室, 绵阳 621000;
  • 3. 华东师范大学地理科学学院地理信息科学教育部重点实验室, 上海 200241;
  • 4. 西华大学食品与生物工程学院, 成都 610039;
  • 5. 昆明理工大学环境科学与工程学院, 昆明 650504;
  • 6. 云南省土壤固碳与污染控制重点实验室, 昆明 650500
基金项目:

四川省国际科技创新合作项目(2021YFH0046);国家卫生健康委员会核技术医学转化重点实验室开放课题(2021HYX030)

摘要: CO2是室内空气质量的重要指标,然而有关居民个体CO2实时暴露研究鲜有报道。为探究城市居民CO2实时暴露特征与家庭个体差异,本研究以四川省32个城市居民家庭(111人)为研究对象,利用CO2实时监测仪监测居民主要生活微环境(厨房、客厅、卧室、室外、办公室和车内)CO2实时浓度,通过详细问卷调查获得居民24 h活动轨迹,绘制CO2实时暴露曲线、分析家庭个体暴露差异、计算不同微环境对居民CO2暴露贡献以及暴露强度。结果表明,13.5%的受试居民存在CO2过度暴露风险(日均暴露浓度>1 000 mg·L-1);所有受试居民均存在短期CO2高浓度暴露风险,日内暴露于1 000 mg·L-1以上浓度累计时长为5.4~11.2 h。受试居民CO2暴露特征存在显著的家庭个体差异。日均暴露浓度与年龄呈正相关,并且存在性别差异。老年、中年和儿童的日均暴露浓度分别为(781±387)、(709±403)和(693±385) mg·L-1。家庭成员中,男童日均暴露浓度高于女童,而中年和老年群体中女性日均暴露浓度均高于男性,控制卧室、客厅、车内和厨房微环境中的CO2浓度可有效减少居民个体CO2暴露风险。本研究为居民CO2实时暴露风险研究和过高浓度暴露风险防控提供参考数据。

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回