面向化学品风险预测的计算毒理学软件比较研究

王柔荑, 王中钰, 于洋, 林军, 傅志强, 李雪花, 陈景文. 面向化学品风险预测的计算毒理学软件比较研究[J]. 生态毒理学报, 2022, 17(1): 325-340. doi: 10.7524/AJE.1673-5897.20210520001
引用本文: 王柔荑, 王中钰, 于洋, 林军, 傅志强, 李雪花, 陈景文. 面向化学品风险预测的计算毒理学软件比较研究[J]. 生态毒理学报, 2022, 17(1): 325-340. doi: 10.7524/AJE.1673-5897.20210520001
Wang Rouyi, Wang Zhongyu, Yu Yang, Lin Jun, Fu Zhiqiang, Li Xuehua, Chen Jingwen. A Comparative Study on Computational Toxicology Software for Chemical Risk Prediction[J]. Asian journal of ecotoxicology, 2022, 17(1): 325-340. doi: 10.7524/AJE.1673-5897.20210520001
Citation: Wang Rouyi, Wang Zhongyu, Yu Yang, Lin Jun, Fu Zhiqiang, Li Xuehua, Chen Jingwen. A Comparative Study on Computational Toxicology Software for Chemical Risk Prediction[J]. Asian journal of ecotoxicology, 2022, 17(1): 325-340. doi: 10.7524/AJE.1673-5897.20210520001

面向化学品风险预测的计算毒理学软件比较研究

    作者简介: 王柔荑(1999-),女,本科生,研究方向为化学品风险评价的计算毒理学,E-mail:Wangrouyi@126.com
    通讯作者: 傅志强, E-mail: fuzq@dlut.edu.cn
  • 基金项目:

    国家自然科学青年基金资助项目(21806018)

    国家自然科学基金资助项目(21661142001)

    国家自然科学基金重点研发计划项目(2018YFE0110700)

    中央高校基本科研业务费专项(DUT20RC (4)002)

  • 中图分类号: X171.5

A Comparative Study on Computational Toxicology Software for Chemical Risk Prediction

    Corresponding author: Fu Zhiqiang, fuzq@dlut.edu.cn
  • Fund Project:
  • 摘要: 化学品风险评价是进行化学品环境管理和污染防治的前提,其关键在于化学品环境暴露和危害性数据的获取。仅采用实验测试获取相关数据的效率较低、成本高,难以满足数以万计的化学品风险评价的需求。以定量构效关系(QSAR)模型为代表的计算毒理学技术,可实现化学品环境暴露与危害性参数的高通量预测,是填补相关数据缺失的重要方法。近年来,计算毒理学领域发展了一批面向化学品环境暴露和危害性参数预测的软件工具,集成了数据和模型资源,在化学品管理活动中发挥了重要作用。本研究共搜集了国内外25款计算毒理学软件,通过文献资料调研和软件试用,从开发背景、预测终点、预测方法、功能与信息完整度和内嵌模型预测性能等方面对软件进行分析比较。分析表明,化学品管理法规支持、多方合作和数据共享,是计算毒理学软件开发的重要基础条件。现有计算毒理学软件在预测终点覆盖度、预测结果可靠性、软件实用性和可拓展性方面仍有提升空间。未来相关软件的开发需要结合深度学习等先进建模技术,增强软件的预测性能并扩大其应用范围,使之成为化学品风险综合评价和决策分析的实用工具。
  • 加载中
  • United Nations Environment Programme (UNEP). Global Chemicals Outlook Ⅱ:From legacies to innovative solutions:Implementing the 2030 agenda for sustainable development[R]. Geneva:UNEP, 2019
    Landrigan P J, Fuller R, Acosta N J R, et al. The Lancet Commission on pollution and health[J]. Lancet, 2018, 391(10119):462-512
    Wu S, Powers S, Zhu W, et al. Substantial contribution of extrinsic risk factors to cancer development[J]. Nature, 2016, 529(7584):43-47
    王中钰,陈景文,乔显亮,等.面向化学品风险评价的计算(预测)毒理学[J].中国科学:化学, 2016, 46(2):222-240

    Wang Z Y, Chen J W, Qiao X L, et al. Computational toxicology:Oriented for chemicals risk assessment[J]. Scientia Sinica Chimica, 2016, 46(2):222-240(in Chinese)

    Wang Z Y, Walker G W, Muir D C G, et al. Toward a global understanding of chemical pollution:A first comprehensive analysis of national and regional chemical inventories[J]. Environmental Science&Technology, 2020, 54(5):2575-2584
    Schmidt C W. TSCA 2.0:A new era in chemical risk management[J]. Environmental Health Perspectives, 2016, 124(10):A182-A186
    Krimsky S. The unsteady state and inertia of chemical regulation under the US Toxic Substances Control Act[J]. PLoS Biology, 2017, 15(12):e2002404
    Hartung T, Rovida C. Chemical regulators have overreached[J]. Nature, 2009, 460(7259):1080-1081
    Kavlock R, Dix D. Computational toxicology as implemented by the US EPA:Providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk[J]. Journal of Toxicology and Environmental Health, Part B, 2010, 13(2-4):197-217
    Egeghy P P, Sheldon L S, Isaacs K K, et al. Computational exposure science:An emerging discipline to support 21st-Century risk assessment[J]. Environmental Health Perspectives, 2016, 124(6):697-702
    Collins F S, Gray G M, Bucher J R. Toxicology. Transforming environmental health protection[J]. Science, 2008, 319(5865):906-907
    Pavan M, Worth A P. Publicly-accessible QSAR software tools developed by the Joint Research Centre[J]. SAR and QSAR in Environmental Research, 2008, 19(7-8):785-799
    Jaworska J S, Comber M, Auer C, et al. Summary of a workshop on regulatory acceptance of (Q) SARs for human health and environmental endpoints[J]. Environmental Health Perspectives, 2003, 111(10):1358-1360
    Organization for Economic Co-Operation and Development (OECD). Guidance document on the validation of (quantitative) structure-activity relationships[(Q) SARs] models[R]. Paris:OECD, 2007
    European Commission, Joint Research Centre (JRC). JRC QSAR Model Database[DB]. Brussels:European Commission, 2020
    Blaauboer B J. Biokinetic modeling and in vitro - in vivo extrapolations[J]. Journal of Toxicology and Environmental Health, Part B, 2010, 13(2-4):242-252
    MacKay D. Finding fugacity feasible[J]. Environmental Science&Technology, 1979, 13(10):1218-1223
    LaLone C A, Ankley G T, Belanger S E, et al. Advancing the adverse outcome pathway framework:An international horizon scanning approach[J]. Environmental Toxicology and Chemistry, 2017, 36(6):1411-1421
    Ball N, Cronin M T, Shen J, et al. Toward good read-across practice (GRAP) guidance[J]. ALTEX, 2016, 33(2):149-166
    Patlewicz G, Jeliazkova N, Gallegos Saliner A, et al. Toxmatch:A new software tool to aid in the development and evaluation of chemically similar groups[J]. SAR and QSAR in Environmental Research, 2008, 19(3-4):397-412
    Dimitrov S D, Diderich R, Sobanski T, et al. QSAR toolbox:Workflow and major functionalities[J]. SAR and QSAR in Environmental Research, 2016, 27(3):203-219
    陈景文,李雪花,于海瀛,等.面向毒害有机物生态风险评价的(Q) SAR技术:进展与展望[J].中国科学(B辑:化学), 2008, 38(6):461-474
    Maunz A, Gütlein M, Rautenberg M, et al. Lazar:A modular predictive toxicology framework[J]. Frontiers in Pharmacology, 2013, 4:38
    Contrera J F, Matthews E J, Benz R D. Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices[J]. Regulatory Toxicology and Pharmacology, 2003, 38(3):243-259
    Luechtefeld T, Marsh D, Rowlands C, et al. Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2018, 165(1):198-212
    Raies A B, Bajic V B. In silico toxicology:Computational methods for the prediction of chemical toxicity[J]. Wiley Interdisciplinary Reviews:Computational Molecular Science, 2016, 6(2):147-172
    European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC).(Q) SARs:Evaluation of the commercially available software for human health and environmental endpoints with respect to chemical management applications[R]. Brussels:ECETOC, 2003
    Lo Y C, Rensi S E, Torng W, et al. Machine learning in chemoinformatics and drug discovery[J]. Drug Discovery Today, 2018, 23(8):1538-1546
    Vo A H, van Vleet T R, Gupta R R, et al. An overview of machine learning and big data for drug toxicity evaluation[J]. Chemical Research in Toxicology, 2020, 33(1):20-37
    Rogers D, Hahn M. Extended-connectivity fingerprints[J]. Journal of Chemical Information and Modeling, 2010, 50(5):742-754
    Mamy L, Patureau D, Barriuso E, et al. Prediction of the fate of organic compounds in the environment from their molecular properties:A review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(12):1277-1377
    Netzeva T I, Worth A, Aldenberg T, et al. Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52[J]. Alternatives to Laboratory Animals, 2005, 33(2):155-173
    Mansouri K, Grulke C M, Judson R S, et al. OPERA models for predicting physicochemical properties and environmental fate endpoints[J]. Journal of Cheminformatics, 2018, 10(1):10
    Todeschini R, Ballabio D, Consonni V, et al. Locally centred Mahalanobis distance:A new distance measure with salient features towards outlier detection[J]. Analytica Chimica Acta, 2013, 787:1-9
    Maggiora G M. On outliers and activity cliffs:Why QSAR often disappoints[J]. Journal of Chemical Information and Modeling, 2006, 46(4):1535
    Williams R V, Amberg A, Brigo A, et al. It's difficult, but important, to make negative predictions[J]. Regulatory Toxicology and Pharmacology, 2016, 76:79-86
    Chakravarti S K, Saiakhov R D, Klopman G. Optimizing predictive performance of CASE Ultra expert system models using the applicability domains of individual toxicity alerts[J]. Journal of Chemical Information and Modeling, 2012, 52(10):2609-2618
    Yordanova D, Schultz T W, Kuseva C, et al. Alert performance:A new functionality in the OECD QSAR Toolbox[J]. Computational Toxicology, 2019, 10:26-37
    Tropsha A. Best practices for QSAR model development, validation, and exploitation[J]. Molecular Informatics, 2010, 29(6-7):476-488
    Min S, Lee B, Yoon S. Deep learning in bioinformatics[J]. Briefings in Bioinformatics, 2017, 18(5):851-869
    Linden L, Goss K U, Endo S. 3D-QSAR predictions for bovine serum albumin-water partition coefficients of organic anions using quantum mechanically based descriptors[J]. Environmental Science Processes&Impacts, 2017, 19(3):261-269
  • 加载中
计量
  • 文章访问数:  4771
  • HTML全文浏览数:  4771
  • PDF下载数:  234
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-20
王柔荑, 王中钰, 于洋, 林军, 傅志强, 李雪花, 陈景文. 面向化学品风险预测的计算毒理学软件比较研究[J]. 生态毒理学报, 2022, 17(1): 325-340. doi: 10.7524/AJE.1673-5897.20210520001
引用本文: 王柔荑, 王中钰, 于洋, 林军, 傅志强, 李雪花, 陈景文. 面向化学品风险预测的计算毒理学软件比较研究[J]. 生态毒理学报, 2022, 17(1): 325-340. doi: 10.7524/AJE.1673-5897.20210520001
Wang Rouyi, Wang Zhongyu, Yu Yang, Lin Jun, Fu Zhiqiang, Li Xuehua, Chen Jingwen. A Comparative Study on Computational Toxicology Software for Chemical Risk Prediction[J]. Asian journal of ecotoxicology, 2022, 17(1): 325-340. doi: 10.7524/AJE.1673-5897.20210520001
Citation: Wang Rouyi, Wang Zhongyu, Yu Yang, Lin Jun, Fu Zhiqiang, Li Xuehua, Chen Jingwen. A Comparative Study on Computational Toxicology Software for Chemical Risk Prediction[J]. Asian journal of ecotoxicology, 2022, 17(1): 325-340. doi: 10.7524/AJE.1673-5897.20210520001

面向化学品风险预测的计算毒理学软件比较研究

    通讯作者: 傅志强, E-mail: fuzq@dlut.edu.cn
    作者简介: 王柔荑(1999-),女,本科生,研究方向为化学品风险评价的计算毒理学,E-mail:Wangrouyi@126.com
  • 1. 工业生态与环境工程教育部重点实验室, 大连市化学品风险防控及污染防治技术重点实验室, 大连理工大学环境学院, 大连 116024;
  • 2. 生态环境部固体废物与化学品管理技术中心, 北京 100029
基金项目:

国家自然科学青年基金资助项目(21806018)

国家自然科学基金资助项目(21661142001)

国家自然科学基金重点研发计划项目(2018YFE0110700)

中央高校基本科研业务费专项(DUT20RC (4)002)

摘要: 化学品风险评价是进行化学品环境管理和污染防治的前提,其关键在于化学品环境暴露和危害性数据的获取。仅采用实验测试获取相关数据的效率较低、成本高,难以满足数以万计的化学品风险评价的需求。以定量构效关系(QSAR)模型为代表的计算毒理学技术,可实现化学品环境暴露与危害性参数的高通量预测,是填补相关数据缺失的重要方法。近年来,计算毒理学领域发展了一批面向化学品环境暴露和危害性参数预测的软件工具,集成了数据和模型资源,在化学品管理活动中发挥了重要作用。本研究共搜集了国内外25款计算毒理学软件,通过文献资料调研和软件试用,从开发背景、预测终点、预测方法、功能与信息完整度和内嵌模型预测性能等方面对软件进行分析比较。分析表明,化学品管理法规支持、多方合作和数据共享,是计算毒理学软件开发的重要基础条件。现有计算毒理学软件在预测终点覆盖度、预测结果可靠性、软件实用性和可拓展性方面仍有提升空间。未来相关软件的开发需要结合深度学习等先进建模技术,增强软件的预测性能并扩大其应用范围,使之成为化学品风险综合评价和决策分析的实用工具。

English Abstract

参考文献 (41)

返回顶部

目录

/

返回文章
返回