United Nations Environment Programme (UNEP). Global Chemicals Outlook Ⅱ:From legacies to innovative solutions:Implementing the 2030 agenda for sustainable development[R]. Geneva:UNEP, 2019
Landrigan P J, Fuller R, Acosta N J R, et al. The Lancet Commission on pollution and health[J]. Lancet, 2018, 391(10119):462-512
Wu S, Powers S, Zhu W, et al. Substantial contribution of extrinsic risk factors to cancer development[J]. Nature, 2016, 529(7584):43-47
王中钰,陈景文,乔显亮,等.面向化学品风险评价的计算(预测)毒理学[J].中国科学:化学, 2016, 46(2):222-240 Wang Z Y, Chen J W, Qiao X L, et al. Computational toxicology:Oriented for chemicals risk assessment[J]. Scientia Sinica Chimica, 2016, 46(2):222-240(in Chinese)
Wang Z Y, Walker G W, Muir D C G, et al. Toward a global understanding of chemical pollution:A first comprehensive analysis of national and regional chemical inventories[J]. Environmental Science&Technology, 2020, 54(5):2575-2584
Schmidt C W. TSCA 2.0:A new era in chemical risk management[J]. Environmental Health Perspectives, 2016, 124(10):A182-A186
Krimsky S. The unsteady state and inertia of chemical regulation under the US Toxic Substances Control Act[J]. PLoS Biology, 2017, 15(12):e2002404
Hartung T, Rovida C. Chemical regulators have overreached[J]. Nature, 2009, 460(7259):1080-1081
Kavlock R, Dix D. Computational toxicology as implemented by the US EPA:Providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk[J]. Journal of Toxicology and Environmental Health, Part B, 2010, 13(2-4):197-217
Egeghy P P, Sheldon L S, Isaacs K K, et al. Computational exposure science:An emerging discipline to support 21st-Century risk assessment[J]. Environmental Health Perspectives, 2016, 124(6):697-702
Collins F S, Gray G M, Bucher J R. Toxicology. Transforming environmental health protection[J]. Science, 2008, 319(5865):906-907
Pavan M, Worth A P. Publicly-accessible QSAR software tools developed by the Joint Research Centre[J]. SAR and QSAR in Environmental Research, 2008, 19(7-8):785-799
Jaworska J S, Comber M, Auer C, et al. Summary of a workshop on regulatory acceptance of (Q) SARs for human health and environmental endpoints[J]. Environmental Health Perspectives, 2003, 111(10):1358-1360
Organization for Economic Co-Operation and Development (OECD). Guidance document on the validation of (quantitative) structure-activity relationships[(Q) SARs] models[R]. Paris:OECD, 2007
European Commission, Joint Research Centre (JRC). JRC QSAR Model Database[DB]. Brussels:European Commission, 2020
Blaauboer B J. Biokinetic modeling and in vitro - in vivo extrapolations[J]. Journal of Toxicology and Environmental Health, Part B, 2010, 13(2-4):242-252
MacKay D. Finding fugacity feasible[J]. Environmental Science&Technology, 1979, 13(10):1218-1223
LaLone C A, Ankley G T, Belanger S E, et al. Advancing the adverse outcome pathway framework:An international horizon scanning approach[J]. Environmental Toxicology and Chemistry, 2017, 36(6):1411-1421
Ball N, Cronin M T, Shen J, et al. Toward good read-across practice (GRAP) guidance[J]. ALTEX, 2016, 33(2):149-166
Patlewicz G, Jeliazkova N, Gallegos Saliner A, et al. Toxmatch:A new software tool to aid in the development and evaluation of chemically similar groups[J]. SAR and QSAR in Environmental Research, 2008, 19(3-4):397-412
Dimitrov S D, Diderich R, Sobanski T, et al. QSAR toolbox:Workflow and major functionalities[J]. SAR and QSAR in Environmental Research, 2016, 27(3):203-219
陈景文,李雪花,于海瀛,等.面向毒害有机物生态风险评价的(Q) SAR技术:进展与展望[J].中国科学(B辑:化学), 2008, 38(6):461-474
Maunz A, Gütlein M, Rautenberg M, et al. Lazar:A modular predictive toxicology framework[J]. Frontiers in Pharmacology, 2013, 4:38
Contrera J F, Matthews E J, Benz R D. Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices[J]. Regulatory Toxicology and Pharmacology, 2003, 38(3):243-259
Luechtefeld T, Marsh D, Rowlands C, et al. Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2018, 165(1):198-212
Raies A B, Bajic V B. In silico toxicology:Computational methods for the prediction of chemical toxicity[J]. Wiley Interdisciplinary Reviews:Computational Molecular Science, 2016, 6(2):147-172
European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC).(Q) SARs:Evaluation of the commercially available software for human health and environmental endpoints with respect to chemical management applications[R]. Brussels:ECETOC, 2003
Lo Y C, Rensi S E, Torng W, et al. Machine learning in chemoinformatics and drug discovery[J]. Drug Discovery Today, 2018, 23(8):1538-1546
Vo A H, van Vleet T R, Gupta R R, et al. An overview of machine learning and big data for drug toxicity evaluation[J]. Chemical Research in Toxicology, 2020, 33(1):20-37
Rogers D, Hahn M. Extended-connectivity fingerprints[J]. Journal of Chemical Information and Modeling, 2010, 50(5):742-754
Mamy L, Patureau D, Barriuso E, et al. Prediction of the fate of organic compounds in the environment from their molecular properties:A review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(12):1277-1377
Netzeva T I, Worth A, Aldenberg T, et al. Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52[J]. Alternatives to Laboratory Animals, 2005, 33(2):155-173
Mansouri K, Grulke C M, Judson R S, et al. OPERA models for predicting physicochemical properties and environmental fate endpoints[J]. Journal of Cheminformatics, 2018, 10(1):10
Todeschini R, Ballabio D, Consonni V, et al. Locally centred Mahalanobis distance:A new distance measure with salient features towards outlier detection[J]. Analytica Chimica Acta, 2013, 787:1-9
Maggiora G M. On outliers and activity cliffs:Why QSAR often disappoints[J]. Journal of Chemical Information and Modeling, 2006, 46(4):1535
Williams R V, Amberg A, Brigo A, et al. It's difficult, but important, to make negative predictions[J]. Regulatory Toxicology and Pharmacology, 2016, 76:79-86
Chakravarti S K, Saiakhov R D, Klopman G. Optimizing predictive performance of CASE Ultra expert system models using the applicability domains of individual toxicity alerts[J]. Journal of Chemical Information and Modeling, 2012, 52(10):2609-2618
Yordanova D, Schultz T W, Kuseva C, et al. Alert performance:A new functionality in the OECD QSAR Toolbox[J]. Computational Toxicology, 2019, 10:26-37
Tropsha A. Best practices for QSAR model development, validation, and exploitation[J]. Molecular Informatics, 2010, 29(6-7):476-488
Min S, Lee B, Yoon S. Deep learning in bioinformatics[J]. Briefings in Bioinformatics, 2017, 18(5):851-869
Linden L, Goss K U, Endo S. 3D-QSAR predictions for bovine serum albumin-water partition coefficients of organic anions using quantum mechanically based descriptors[J]. Environmental Science Processes&Impacts, 2017, 19(3):261-269