基于有害结局路径的化学物质计算毒理学研究
Computational Toxicity Prediction of Chemicals by Adverse Outcome Pathway (AOP)
-
摘要: 计算毒理学利用分子致毒机制信息和数学模型预测化学物质对人体健康和环境的危害。有害结局路径(adverse outcome pathway,AOP)可将化学物质在个体水平的危害或有害结局(adverse outcome,AO)与其在分子水平上的启动事件(molecular initiating event,MIE)建立关联,为将表征分子致毒机制的体外生物测试数据应用到高通量的化学物质毒性预测中提供了可能。然而,目前缺乏基于有害结局路径的高通量预测化学物质毒性的研究。本研究基于AOP框架,联合ToxCast体外测试数据,选取101种典型环境化学物质进行毒性预测,并通过与PubChem内已报道的化学物质毒性比较,对预测结果进行评价。结果表明,基于AOP预测到101种化学物质共可潜在诱导58个AOs,覆盖了生殖毒性等在内的11个毒性类型。不同毒性类型的真阳性预测率(true positive rate,TPR)不同,其中致癌/遗传毒性、生殖毒性与消化系统毒性的TPR均超过了70%,而神经毒性与呼吸系统毒性的TPR均低于30%。不同毒性类型的TPR与AOP知识库中该毒性类型的AOP (P<0.02,r=0.685)、MIE (P<0.01,r=0.734)、体外生物测试的数量(P<0.01,r=0.752)和化学物质体外测试数量(P<0.01,r=0.293)呈显著正相关。综上,本研究的结果表明,增加高通量体外测试数据和丰富AOP知识库,将进一步提高对化学物质的潜在毒性预测的准确性,为未来化学物质的高通量筛查和风险评估提供支撑。Abstract: The aim of computational toxicology is to predict adverse effects of chemicals on human health and ecological species based on mechanistic information via mathematical models. The development of adverse outcome pathway (AOP) framework allows toxicity prediction of chemical using molecular mechanism data, where the molecular initiating event (MIE) can be connected to the adverse outcome (AO) at individual level. However, there lacks systematic evaluation on high-throughput prediction of chemical toxicity based on AOP. Here, we developed a method of toxicity prediction by integrating in vitro bioassays data in ToxCast and AOPs deposited in the AOP knowledge base (AOP-KB). A wide spectrum of toxicity endpoints of 101 chemical were predicted and the prediction results were validated by comparing with the toxicity reported in PubChem. The results demonstrated that the AOP framework can effectively predict 11 types of toxicity (e.g. reproductive toxicity) for 101 chemicals. The true positive prediction rates (TPRs) were different for different toxicity types, among which the TPRs of carcinogenic/genetic toxicity, reproductive toxicity and digestive toxicity were all more than 70%, while the TPRs of neurotoxicity and respiratory toxicity were less than 30%.The TPR with different toxicity types was positively correlated with the counts of AOPs (P<0.02, r=0.685), MIEs (P<0.01, r=0.734), in vitro bioassays (positive) (P<0.01, r=0.752) in the AOP knowledge database, and in vitro bioassays (positive) for the 101 chemicals (P<0.01, r=0.293). Overall, this study demonstrated that the efficiency of chemical toxicity prediction can be significantly improved by enlargement of the in vitro bioassays data and enrichment of AOP knowledgebase, which is valuable for future risk assessment and management of chemicals.
-
Key words:
- chemical /
- high-throughput /
- predictive toxicology /
- adverse outcome pathway /
- in vitro bioassay
-
-
Krewski D, Acosta D Jr, Andersen M, et al. Toxicity testing in the 21st century:A vision and a strategy[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2010, 13(2-4):51-138 Geiser K, Edwards S. Global chemicals outlook:Towards sound management of chemicals[R]. Gigiri Nairobi, Kenya:United Nations Environment Programme, 2013 Judson R, Richard A, Dix D J, et al. The toxicity data landscape for environmental chemicals[J]. Environmental Health Perspectives, 2009, 117(5):685-695 Bradbury S P, Feijtel T C J, van Leeuwen C J. Meeting the scientific needs of ecological risk assessment in a regulatory context[J]. Environmental Science&Technology, 2004, 38(23):463A-470A Shukla S J, Huang R L, Austin C P, et al. The future of toxicity testing:A focus on in vitro methods using a quantitative high-throughput screening platform[J]. Drug Discovery Today, 2010, 15(23-24):997-1007 Ouedraogo M, Baudoux T, Stévigny C, et al. Review of current and "omics" methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms[J]. Journal of Ethnopharmacology, 2012, 140(3):492-512 Dix D J, Houck K A, Martin M T, et al. The ToxCast program for prioritizing toxicity testing of environmental chemicals[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2007, 95(1):5-12 Richard A M, Judson R S, Houck K A, et al. ToxCast chemical landscape:Paving the road to 21st Century toxicology[J]. Chemical Research in Toxicology, 2016, 29(8):1225-1251 Tice R R, Austin C P, Kavlock R J, et al. Improving the human hazard characterization of chemicals:A Tox21 update[J]. Environmental Health Perspectives, 2013, 121(7):756-765 Judson R S, Houck K A, Kavlock R J, et al. in vitro screening of environmental chemicals for targeted testing prioritization:The ToxCast project[J]. Environmental Health Perspectives, 2010, 118(4):485-492 Ciallella H L, Zhu H. Advancing computational toxicology in the big data era by artificial intelligence:Data-driven and mechanism-driven modeling for chemical toxicity[J]. Chemical Research in Toxicology, 2019, 32(4):536-547 Organization for Economic Co-operation and Development (OECD).(Q) SARs:Evaluation of the commercially available software for human health and environmental endpoints with respect to chemical management applications-Technical report[R]. Brussels:OECD, 2003 Patlewicz G, Ball N, Becker R A, et al. Read-across approaches:Misconceptions, promises and challenges ahead[J]. ALTEX, 2014, 31(4):387-396 Wang N C, Jay Zhao Q, Wesselkamper S C, et al. Application of computational toxicological approaches in human health risk assessment. Ⅰ. A tiered surrogate approach[J]. Regulatory Toxicology and Pharmacology, 2012, 63(1):10-19 Braga R C, Alves V M, Muratov E N, et al. Pred-skin:A fast and reliable web application to assess skin sensitization effect of chemicals[J]. Journal of Chemical Information and Modeling, 2017, 57(5):1013-1017 Russo D P, Strickland J, Karmaus A L, et al. Nonanimal models for acute toxicity evaluations:Applying data-driven profiling and read-across[J]. Environmental Health Perspectives, 2019, 127(4):47001 Zhu H, Bouhifd M, Donley E, et al. Supporting read-across using biological data[J]. ALTEX, 2016, 33(2):167-182 Wittwehr C, Aladjov H, Ankley G, et al. How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology[J]. Toxicological Sciences, 2016, 155(2):326-336 张家敏,彭颖,方文迪,等.有害结局路径(AOP)框架在水体复合污染监测研究中的应用[J].生态毒理学报, 2017, 12(1):1-14 Zhang J M, Peng Y, Fang W D, et al. Application of adverse outcome pathways framework in monitoring of toxic chemicals from aquatic environments[J]. Asian Journal of Ecotoxicology, 2017, 12(1):1-14(in Chinese)
Ankley G T, Bennett R S, Erickson R J, et al. Adverse outcome pathways:A conceptual framework to support ecotoxicology research and risk assessment[J]. Environmental Toxicology and Chemistry, 2010, 29(3):730-741 Villeneuve D L, Crump D, Garcia-Reyero N, et al. Adverse outcome pathway (AOP) development Ⅰ:Strategies and principles[J]. Toxicological Sciences, 2014, 142(2):312-320 International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Medical Dictionary for Regulatory Activities[R]. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, 2017 Hines D E, Edwards S W, Conolly R B, et al. A case study application of the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks to facilitate the integration of human health and ecological end points for cumulative risk assessment (CRA)[J]. Environmental Science&Technology, 2018, 52(2):839-849 Perkins E J, Ashauer R, Burgoon L, et al. Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment[J]. Environmental Toxicology and Chemistry, 2019, 38(9):1850-1865 Jaworska J, Dancik Y, Kern P, et al. Bayesian integrated testing strategy to assess skin sensitization potency:From theory to practice[J]. Journal of Applied Toxicology, 2013, 33(11):1353-1364 Mellor C L, Steinmetz F P, Cronin M T D. Using molecular initiating events to develop a structural alert based screening workflow for nuclear receptor ligands associated with hepatic steatosis[J]. Chemical Research in Toxicology, 2016, 29(2):203-212 Phillips M B, Leonard J A, Grulke C M, et al. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways[J]. Environmental Health Perspectives, 2016, 124(1):53-60 Aguayo-Orozco A, Audouze K, Siggaard T, et al. sAOP:Linking chemical stressors to adverse outcomes pathway networks[J]. Bioinformatics, 2019, 35(24):5391-5392 Escher B I, Henneberger L, K nig M, et al. Cytotoxicity burst differentiating specific from nonspecific effects in Tox21 in vitro reporter gene assays[J]. Environmental Health Perspectives, 2020, 128(7):77007 魏凤华,张俊江,夏普,等.类二噁英物质及芳香烃受体(AhR)介导的有害结局路径(AOP)研究进展[J].生态毒理学报, 2016, 11(1):37-51 Wei F H, Zhang J J, Xia P, et al. Research progress on dioxin-like compounds and AhR-mediated adverse outcome pathway (AOP)[J]. Asian Journal of Ecotoxicology, 2016, 11(1):37-51(in Chinese)
中华人民共和国生态环境部.中国现有化学物质名录[S].北京:中华人民共和国生态环境部, 2013Ministry of Ecology and Environment of the People's Republic of China. Inventory of existing chemical substances in China[S]. Beijing:Ministry of Ecology and Environment of the People's Republic of China, 2013(in Chinese) Bonefeld-Jorgensen E C, Long M H, Bossi R, et al. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit:A case control study[J]. Environmental Health:A Global Access Science Source, 2011, 10:88 Han R, Zhang F, Wan C, et al. Effect of perfluorooctane sulphonate-induced Kupffer cell activation on hepatocyte proliferation through the NF- κ B/TNF-α /IL-6-dependent pathway[J]. Chemosphere, 2018, 200:283-294 Chen X X, Nie X K, Mao J M, et al. Perfluorooctanesulfonate induces neuroinflammation through the secretion of TNF-α mediated by the JAK2/STAT3 pathway[J]. Neurotoxicology, 2018, 66:32-42 Chen J F, Das S R, la du J, et al. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring[J]. Environmental Toxicology and Chemistry, 2013, 32(1):201-206 Luebker D J, York R G, Hansen K J, et al. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats:Dose-response, and biochemical and pharamacokinetic parameters[J]. Toxicology, 2005, 215(1-2):149-169 Soloff A C, Wolf B J, White N D, et al. Environmental perfluorooctane sulfonate exposure drives T cell activation in bottlenose dolphins[J]. Journal of Applied Toxicology, 2017, 37(9):1108-1116 Tang L L, Wang J D, Xu T T, et al. Mitochondrial toxicity of perfluorooctane sulfonate in mouse embryonic stem cell-derived cardiomyocytes[J]. Toxicology, 2017, 382:108-116 Mansouri K, Kleinstreuer N, Abdelaziz A M, et al. CoMPARA:Collaborative modeling project for androgen receptor activity[J]. Environmental Health Perspectives, 2020, 128(2):27002 Russo D P, Strickland J, Karmaus A L, et al. Nonanimal models for acute toxicity evaluations:Applying data-driven profiling and read-across[J]. Environmental Health Perspectives, 2019, 127(4):47001 Angrish M M, Dominici C Y, Zacharewski T R. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice[J]. Toxicological Sciences, 2012, 131(1):108-115 Angrish M M, Jones A D, Harkema J R, et al. Aryl hydrocarbon receptor-mediated induction of Stearoyl-CoA desaturase 1 alters hepatic fatty acid composition in TCDD-elicited steatosis[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2011, 124(2):299-310 Angrish M M, Mets B D, Jones A D, et al. Dietary fat is a lipid source in 2,3,7,8-tetrachlorodibenzo- ρ -dioxin (TCDD)-elicited hepatic steatosis in C57BL/6 mice[J]. Toxicological Sciences, 2012, 128(2):377-386 Ullah S, Zuberi A, Alagawany M, et al. Cypermethrin induced toxicities in fish and adverse health outcomes:Its prevention and control measure adaptation[J]. Journal of Environmental Management, 2018, 206:863-871 European Food Safety Authority. Peer review of the pesticide risk assessment of the active substance cypermethrin[S]. Parma:European Food Safety Authority, 2018 中华人民共和国生态环境部.化学物质环境风险评估技术方法框架性指南(试行)[S].北京:中华人民共和国生态环境部, 2019Ministry of Ecology and Environment of the People's Republic of China. The framework guide for technology methods for environmental risk assessment of chemical substances (trial)[S]. Beijing:Ministry of Ecology and Environment of the People's Republic of China, 2019(in Chinese) Zhang X W, Xia P, Wang P P, et al. Omics advances in ecotoxicology[J]. Environmental Science&Technology, 2018, 52(7):3842-3851 Dai J Y. Reduced transcriptomic approach for screening and prediction of chemical toxicity[J]. Chemical Research in Toxicology, 2018, 31(7):532-533 Thomas R S, Philbert M A, Auerbach S S, et al. Incorporating new technologies into toxicity testing and risk assessment:Moving from 21st Century vision to a data-driven framework[J]. Toxicological Sciences, 2013, 136(1):4-18 -

计量
- 文章访问数: 5223
- HTML全文浏览数: 5223
- PDF下载数: 292
- 施引文献: 0