氟啶虫酰胺慢性暴露对斑马鱼神经行为影响研究
Neurobehavioral Effect of Chronic Flonicamid Exposure in Adult Zebrafish
-
摘要: 氟啶虫酰胺是一种高选择性杀虫剂,对蚜虫等刺吸式口器害虫具有很好的神经毒性和快速拒食活性,是目前唯一被报道的作用于内向整流钾离子通道的杀虫剂。为了更科学、合理地使用氟啶虫酰胺,开展氟啶虫酰胺对环境非靶标生物毒性及其机制研究具有重要意义。本研究以斑马鱼(Danio rerio)为研究对象,研究环境相关浓度氟啶虫酰胺慢性暴露21 d对斑马鱼的神经行为毒性。结果表明,氟啶虫酰胺浓度为1、10和100 μg·L-1时,氟啶虫酰胺慢性暴露对被试斑马鱼成鱼焦虑样行为以及学习、记忆行为造成一定影响;被试斑马鱼多巴胺和皮质醇的含量有一定的增高趋势,但与对照组相比无显著差异(P>0.05);与神经行为相关基因线粒体外膜蛋白2(mitoguardin 2,miga2)和黄嘌呤脱氢酶(xanthine dehydrogenase,xdh)的表达水平发生显著改变(P<0.05);而腺苷脱氨酶(adenosine deaminase,ada)、干扰素调节因子1(interferon regulatory factor 1,irf1)和线粒体融合蛋白2(mitofusin 2,mfn2)3个基因的表达量无显著性影响(P>0.05)。因此,斑马鱼成鱼暴露于1、10和100 μg·L-1的氟啶虫酰胺21 d后,其行为出现异常,线粒体和免疫功能受到影响。本研究对氟啶虫酰胺对水生生物毒性风险预警具有重要的参考价值。Abstract: Flonicamid, a selective insecticide, is the only insecticide which is reported to act on the inwardly-rectifying potassium channels (Kir) at present. It exerts toxic effects against sap-sucking insects by inhibiting insect feeding and neurotoxicity. In order to use it rationally and scientifically to control pests, it is significant to study the toxicity of flonicamid to environmental non-target organisms and its mechanism. In this work, zebrafish (Danio rerio) is used to study the neurobehavioral toxicity of flonicamid by chronic exposure for 21 d with environmental related concentrations. We found that flonicamid showed a potential effect on anxiety-like behavior and learning-memory capacity of adult zebrafish at the concentrations of 10 μg·L-1 and 100 μg·L-1, and increased slightly the contents of dopamine and cortisol in the treated zebrafish. However, there was no significant difference compared to the control group (P>0.05). RT-qPCR revealed that the expression levels of miga2 (mitoguardin 2) and xdh (xanthine dehydrogenase) related to neurobehavior were changed significantly (P<0.05). The expression of ada (adenosine deaminase), irf1 (interferon regulatory factor 1) and mfn2 (mitofusin 2) genes showed no significant difference comparing with that in the control group (P>0.05). Therefore, flonicamid showed potential effects on the behavior, mitochondrial and immune function of zebrafish after exposed chronically to 1, 10 and 100 μg·L-1 for 21 d. This study provides a starting point to unveil the early warning of aquatic toxicity of flonicamid.
-
Key words:
- flonicamid /
- zebrafish /
- neurobehavioral toxicity /
- anxiety-like behavior /
- learning-memory behavior
-
-
仇是胜, 柏亚罗, 顾林玲. 氟啶虫酰胺的研究开发及市场前景[J]. 现代农药, 2014, 13(5):6-11 Qiu S S, Bai Y L, Gu L L. Research, development and market prospect of flonicamid[J]. Modern Agrochemicals, 2014, 13(5):6-11(in Chinese)
苏建亚. 氟啶虫酰胺作用靶标:内向整流钾离子通道研究进展[J]. 农药学学报, 2019, 21(2):131-139 Su J Y. Molecular target of flonicamid:Inward-rectifying potassium channels[J]. Chinese Journal of Pesticide Science, 2019, 21(2):131-139(in Chinese)
Sparks T C, Crossthwaite A J, Nauen R, et al. Insecticides, biologics and nematicides:Updates to IRAC's mode of action classification:A tool for resistance management[J]. Pesticide Biochemistry and Physiology, 2020, 167:104587 Ren M M, Niu J G, Hu B, et al. Block of Kir channels by flonicamid disrupts salivary and renal excretion of insect pests[J]. Insect Biochemistry and Molecular Biology, 2018, 99:17-26 沈娟. 新型杀虫剂:氟啶虫酰胺对蚜虫的生物学活性[J]. 世界农药, 2011, 33(5):19-22 Hibino H, Inanobe A, Furutani K, et al. Inwardly rectifying potassium channels:Their structure, function, and physiological roles[J]. Physiological Reviews, 2010, 90(1):291-366 Piermarini P M, Inocente E A, Acosta N, et al. Inward rectifier potassium (Kir) channels in the soybean aphid Aphis glycines:Functional characterization, pharmacology, and toxicology[J]. Journal of Insect Physiology, 2018, 110:57-65 Li Z L, Davis J A, Swale D R. Chemical inhibition of Kir channels reduces salivary secretions and phloem feeding of the cotton aphid, Aphis gossypii (Glover)[J]. Pest Management Science, 2019, 75(10):2725-2734 Meng X K, Wu Z L, Yang X M, et al. Flonicamid and knockdown of inward rectifier potassium channel gene CsKir2B adversely affect the feeding and development of Chilo suppressalis[J]. Pest Management Science, 2021, 77(4):2045-2053 Metcalfe C D, Helm P, Paterson G, et al. Pesticides related to land use in watersheds of the Great Lakes Basin[J]. Science of the Total Environment, 2019, 648:681-692 Yu Z M, Li X F, Wang S R, et al. The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China[J]. Environmental Pollution, 2021, 284:117358 张亦冰. 新颖杀虫剂:氟啶虫酰胺[J]. 世界农药, 2010, 32(1):54-56 Fishman M C. Genomics. Zebrafish:The canonical vertebrate[J]. Science, 2001, 294(5545):1290-1291 Gerlai R. Zebrafish and relational memory:Could a simple fish be useful for the analysis of biological mechanisms of complex vertebrate learning?[J]. Behavioural Processes, 2017, 141:242-250 Viscarra F, González-Gutierrez J, Esparza E, et al. Nicotinic antagonist UFR2709 inhibits nicotine reward and decreases anxiety in zebrafish[J]. Molecules, 2020, 25(13):E2998 Zhang H, Zhao L J. Influence of sublethal doses of acetamiprid and halosulfuron-methyl on metabolites of zebra fish (Brachydanio rerio)[J]. Aquatic Toxicology, 2017, 191:85-94 Crosby E B, Bailey J M, Oliveri A N, et al. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish[J]. Neurotoxicology and Teratology, 2015, 49:81-90 孙智慧, 贾顺姬, 孟安明. 斑马鱼:在生命科学中畅游[J]. 生命科学, 2006, 18(5):431-436 Sun Z H, Jia S J, Meng A M. Zebrafish:Swimming in life sciences[J]. Chinese Bulletin of Life Sciences, 2006, 18(5):431-436(in Chinese)
Egan R J, Bergner C L, Hart P C, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish[J]. Behavioural Brain Research, 2009, 205(1):38-44 Maximino C, de Brito T M, da Silva Batista A W, et al. Measuring anxiety in zebrafish:A critical review[J]. Behavioural Brain Research, 2010, 214(2):157-171 Zhang S H, Liu X D, Sun M Z, et al. Reversal of reserpine-induced depression and cognitive disorder in zebrafish by sertraline and Traditional Chinese Medicine (TCM)[J]. Behavioral and Brain Functions, 2018, 14(1):13 Benvenutti R, Marcon M, Gallas-Lopes M, et al. Swimming in the maze:An overview of maze apparatuses and protocols to assess zebrafish behavior[J]. Neuroscience and Biobehavioral Reviews, 2021, 127:761-778 马明, 陈默, 王鸣华. 氟啶虫酰胺高效液相色谱分析方法研究[J]. 世界农药, 2015, 37(3):51-53 Ma M, Chen M, Wang M H. Quantitative analysis of flonicamid by HPLC[J]. World Pesticides, 2015, 37(3):51-53(in Chinese)
Dong G P, Li X, Han G X, et al. Zebrafish neuro-behavioral profiles altered by acesulfame (ACE) within the range of "no observed effect concentrations (NOECs)"[J]. Chemosphere, 2020, 243:125431 Pilehvar A, Town R M, Blust R. The effect of copper on behaviour, memory, and associative learning ability of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2020, 188:109900 Cristalli G, Costanzi S, Lambertucci C, et al. Adenosine deaminase:Functional implications and different classes of inhibitors[J]. Medicinal Research Reviews, 2001, 21(2):105-128 Sauer A V, Hernandez R J, Fumagalli F, et al. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients[J]. Scientific Reports, 2017, 7:40136 李雪平, 蔡晓丽, 曹立辉. 干扰素调节因子家族成员及功能简述[J]. 中国动物保健, 2020, 22(7):71-72 , 77
应岚, 卢中秋, 姚咏明. 线粒体融合蛋白2的结构与功能研究进展[J]. 生理科学进展, 2016, 47(2):108-112 刘晓满. MIGA1/2促进线粒体融合并维持雌性小鼠生殖力[D]. 杭州:浙江大学, 2015:6-9 Liu X M. MIGA1/2 Promote mitochondria fusion and are essential for female mouse fertility[D]. Hangzhou:Zhejiang University, 2015:6-9(in Chinese)
Fan K Q, Li Y Y, Wang H L, et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior[J]. Cell, 2019, 179(4):864-879 Schultz W. Multiple functions of dopamine neurons[J]. F1000 Biology Reports, 2010, 2:2 Ramsay J M, Feist G W, Varga Z M, et al. Whole-body cortisol is an indicator of crowding stress in adult zebrafish, Danio rerio[J]. Aquaculture, 2006, 258(1-4):565-574 Levin E D, Bencan Z, Cerutti D T. Anxiolytic effects of nicotine in zebrafish[J]. Physiology & Behavior, 2007, 90(1):54-58 Silic M R, Murata S H, Park S J, et al. Evolution of inwardly rectifying potassium channels and their gene expression in zebrafish embryos[J]. Developmental Dynamics:An Official Publication of the American Association of Anatomists, 2022, 251(4):687-713 Kubo Y, Adelman J P, Clapham D E, et al. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels[J]. Pharmacological Reviews, 2005, 57(4):509-526 Pattnaik B R, Asuma M P, Spott R, et al. Genetic defects in the hotspot of inwardly rectifying K(+) (Kir) channels and their metabolic consequences:A review[J]. Molecular Genetics and Metabolism, 2012, 105(1):64-72 -

计量
- 文章访问数: 2396
- HTML全文浏览数: 2396
- PDF下载数: 113
- 施引文献: 0