氟啶虫酰胺慢性暴露对斑马鱼神经行为影响研究

刘红丽, 张燕宁, 毛连纲, 朱丽珍, 刘新刚, 蒋红云, 张兰. 氟啶虫酰胺慢性暴露对斑马鱼神经行为影响研究[J]. 生态毒理学报, 2022, 17(5): 362-372. doi: 10.7524/AJE.1673-5897.20211028003
引用本文: 刘红丽, 张燕宁, 毛连纲, 朱丽珍, 刘新刚, 蒋红云, 张兰. 氟啶虫酰胺慢性暴露对斑马鱼神经行为影响研究[J]. 生态毒理学报, 2022, 17(5): 362-372. doi: 10.7524/AJE.1673-5897.20211028003
Liu Hongli, Zhang Yanning, Mao Liangang, Zhu Lizhen, Liu Xingang, Jiang Hongyun, Zhang Lan. Neurobehavioral Effect of Chronic Flonicamid Exposure in Adult Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 362-372. doi: 10.7524/AJE.1673-5897.20211028003
Citation: Liu Hongli, Zhang Yanning, Mao Liangang, Zhu Lizhen, Liu Xingang, Jiang Hongyun, Zhang Lan. Neurobehavioral Effect of Chronic Flonicamid Exposure in Adult Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 362-372. doi: 10.7524/AJE.1673-5897.20211028003

氟啶虫酰胺慢性暴露对斑马鱼神经行为影响研究

    作者简介: 刘红丽(1997-),女,硕士研究生,研究方向为农药毒理学,E-mail:hongliliu01@126.com
    通讯作者: 张兰, E-mail: lanzhang@ippcaas.cn
  • 基金项目:

    国家自然科学基金青年基金项目(31801769)

  • 中图分类号: X171.5

Neurobehavioral Effect of Chronic Flonicamid Exposure in Adult Zebrafish

    Corresponding author: Zhang Lan, lanzhang@ippcaas.cn
  • Fund Project:
  • 摘要: 氟啶虫酰胺是一种高选择性杀虫剂,对蚜虫等刺吸式口器害虫具有很好的神经毒性和快速拒食活性,是目前唯一被报道的作用于内向整流钾离子通道的杀虫剂。为了更科学、合理地使用氟啶虫酰胺,开展氟啶虫酰胺对环境非靶标生物毒性及其机制研究具有重要意义。本研究以斑马鱼(Danio rerio)为研究对象,研究环境相关浓度氟啶虫酰胺慢性暴露21 d对斑马鱼的神经行为毒性。结果表明,氟啶虫酰胺浓度为1、10和100 μg·L-1时,氟啶虫酰胺慢性暴露对被试斑马鱼成鱼焦虑样行为以及学习、记忆行为造成一定影响;被试斑马鱼多巴胺和皮质醇的含量有一定的增高趋势,但与对照组相比无显著差异(P>0.05);与神经行为相关基因线粒体外膜蛋白2(mitoguardin 2,miga2)和黄嘌呤脱氢酶(xanthine dehydrogenase,xdh)的表达水平发生显著改变(P<0.05);而腺苷脱氨酶(adenosine deaminase,ada)、干扰素调节因子1(interferon regulatory factor 1,irf1)和线粒体融合蛋白2(mitofusin 2,mfn2)3个基因的表达量无显著性影响(P>0.05)。因此,斑马鱼成鱼暴露于1、10和100 μg·L-1的氟啶虫酰胺21 d后,其行为出现异常,线粒体和免疫功能受到影响。本研究对氟啶虫酰胺对水生生物毒性风险预警具有重要的参考价值。
  • 加载中
  • 仇是胜, 柏亚罗, 顾林玲. 氟啶虫酰胺的研究开发及市场前景[J]. 现代农药, 2014, 13(5):6-11

    Qiu S S, Bai Y L, Gu L L. Research, development and market prospect of flonicamid[J]. Modern Agrochemicals, 2014, 13(5):6-11(in Chinese)

    苏建亚. 氟啶虫酰胺作用靶标:内向整流钾离子通道研究进展[J]. 农药学学报, 2019, 21(2):131-139

    Su J Y. Molecular target of flonicamid:Inward-rectifying potassium channels[J]. Chinese Journal of Pesticide Science, 2019, 21(2):131-139(in Chinese)

    Sparks T C, Crossthwaite A J, Nauen R, et al. Insecticides, biologics and nematicides:Updates to IRAC's mode of action classification:A tool for resistance management[J]. Pesticide Biochemistry and Physiology, 2020, 167:104587
    Ren M M, Niu J G, Hu B, et al. Block of Kir channels by flonicamid disrupts salivary and renal excretion of insect pests[J]. Insect Biochemistry and Molecular Biology, 2018, 99:17-26
    沈娟. 新型杀虫剂:氟啶虫酰胺对蚜虫的生物学活性[J]. 世界农药, 2011, 33(5):19-22
    Hibino H, Inanobe A, Furutani K, et al. Inwardly rectifying potassium channels:Their structure, function, and physiological roles[J]. Physiological Reviews, 2010, 90(1):291-366
    Piermarini P M, Inocente E A, Acosta N, et al. Inward rectifier potassium (Kir) channels in the soybean aphid Aphis glycines:Functional characterization, pharmacology, and toxicology[J]. Journal of Insect Physiology, 2018, 110:57-65
    Li Z L, Davis J A, Swale D R. Chemical inhibition of Kir channels reduces salivary secretions and phloem feeding of the cotton aphid, Aphis gossypii (Glover)[J]. Pest Management Science, 2019, 75(10):2725-2734
    Meng X K, Wu Z L, Yang X M, et al. Flonicamid and knockdown of inward rectifier potassium channel gene CsKir2B adversely affect the feeding and development of Chilo suppressalis[J]. Pest Management Science, 2021, 77(4):2045-2053
    Metcalfe C D, Helm P, Paterson G, et al. Pesticides related to land use in watersheds of the Great Lakes Basin[J]. Science of the Total Environment, 2019, 648:681-692
    Yu Z M, Li X F, Wang S R, et al. The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China[J]. Environmental Pollution, 2021, 284:117358
    张亦冰. 新颖杀虫剂:氟啶虫酰胺[J]. 世界农药, 2010, 32(1):54-56
    Fishman M C. Genomics. Zebrafish:The canonical vertebrate[J]. Science, 2001, 294(5545):1290-1291
    Gerlai R. Zebrafish and relational memory:Could a simple fish be useful for the analysis of biological mechanisms of complex vertebrate learning?[J]. Behavioural Processes, 2017, 141:242-250
    Viscarra F, González-Gutierrez J, Esparza E, et al. Nicotinic antagonist UFR2709 inhibits nicotine reward and decreases anxiety in zebrafish[J]. Molecules, 2020, 25(13):E2998
    Zhang H, Zhao L J. Influence of sublethal doses of acetamiprid and halosulfuron-methyl on metabolites of zebra fish (Brachydanio rerio)[J]. Aquatic Toxicology, 2017, 191:85-94
    Crosby E B, Bailey J M, Oliveri A N, et al. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish[J]. Neurotoxicology and Teratology, 2015, 49:81-90
    孙智慧, 贾顺姬, 孟安明. 斑马鱼:在生命科学中畅游[J]. 生命科学, 2006, 18(5):431-436

    Sun Z H, Jia S J, Meng A M. Zebrafish:Swimming in life sciences[J]. Chinese Bulletin of Life Sciences, 2006, 18(5):431-436(in Chinese)

    Egan R J, Bergner C L, Hart P C, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish[J]. Behavioural Brain Research, 2009, 205(1):38-44
    Maximino C, de Brito T M, da Silva Batista A W, et al. Measuring anxiety in zebrafish:A critical review[J]. Behavioural Brain Research, 2010, 214(2):157-171
    Zhang S H, Liu X D, Sun M Z, et al. Reversal of reserpine-induced depression and cognitive disorder in zebrafish by sertraline and Traditional Chinese Medicine (TCM)[J]. Behavioral and Brain Functions, 2018, 14(1):13
    Benvenutti R, Marcon M, Gallas-Lopes M, et al. Swimming in the maze:An overview of maze apparatuses and protocols to assess zebrafish behavior[J]. Neuroscience and Biobehavioral Reviews, 2021, 127:761-778
    马明, 陈默, 王鸣华. 氟啶虫酰胺高效液相色谱分析方法研究[J]. 世界农药, 2015, 37(3):51-53

    Ma M, Chen M, Wang M H. Quantitative analysis of flonicamid by HPLC[J]. World Pesticides, 2015, 37(3):51-53(in Chinese)

    Dong G P, Li X, Han G X, et al. Zebrafish neuro-behavioral profiles altered by acesulfame (ACE) within the range of "no observed effect concentrations (NOECs)"[J]. Chemosphere, 2020, 243:125431
    Pilehvar A, Town R M, Blust R. The effect of copper on behaviour, memory, and associative learning ability of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2020, 188:109900
    Cristalli G, Costanzi S, Lambertucci C, et al. Adenosine deaminase:Functional implications and different classes of inhibitors[J]. Medicinal Research Reviews, 2001, 21(2):105-128
    Sauer A V, Hernandez R J, Fumagalli F, et al. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients[J]. Scientific Reports, 2017, 7:40136
    李雪平, 蔡晓丽, 曹立辉. 干扰素调节因子家族成员及功能简述[J]. 中国动物保健, 2020, 22(7):71-72

    , 77

    应岚, 卢中秋, 姚咏明. 线粒体融合蛋白2的结构与功能研究进展[J]. 生理科学进展, 2016, 47(2):108-112
    刘晓满. MIGA1/2促进线粒体融合并维持雌性小鼠生殖力[D]. 杭州:浙江大学, 2015:6-9 Liu X M. MIGA1/2

    Promote mitochondria fusion and are essential for female mouse fertility[D]. Hangzhou:Zhejiang University, 2015:6-9(in Chinese)

    Fan K Q, Li Y Y, Wang H L, et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior[J]. Cell, 2019, 179(4):864-879
    Schultz W. Multiple functions of dopamine neurons[J]. F1000 Biology Reports, 2010, 2:2
    Ramsay J M, Feist G W, Varga Z M, et al. Whole-body cortisol is an indicator of crowding stress in adult zebrafish, Danio rerio[J]. Aquaculture, 2006, 258(1-4):565-574
    Levin E D, Bencan Z, Cerutti D T. Anxiolytic effects of nicotine in zebrafish[J]. Physiology & Behavior, 2007, 90(1):54-58
    Silic M R, Murata S H, Park S J, et al. Evolution of inwardly rectifying potassium channels and their gene expression in zebrafish embryos[J]. Developmental Dynamics:An Official Publication of the American Association of Anatomists, 2022, 251(4):687-713
    Kubo Y, Adelman J P, Clapham D E, et al. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels[J]. Pharmacological Reviews, 2005, 57(4):509-526
    Pattnaik B R, Asuma M P, Spott R, et al. Genetic defects in the hotspot of inwardly rectifying K(+) (Kir) channels and their metabolic consequences:A review[J]. Molecular Genetics and Metabolism, 2012, 105(1):64-72
  • 加载中
计量
  • 文章访问数:  2396
  • HTML全文浏览数:  2396
  • PDF下载数:  113
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-28
刘红丽, 张燕宁, 毛连纲, 朱丽珍, 刘新刚, 蒋红云, 张兰. 氟啶虫酰胺慢性暴露对斑马鱼神经行为影响研究[J]. 生态毒理学报, 2022, 17(5): 362-372. doi: 10.7524/AJE.1673-5897.20211028003
引用本文: 刘红丽, 张燕宁, 毛连纲, 朱丽珍, 刘新刚, 蒋红云, 张兰. 氟啶虫酰胺慢性暴露对斑马鱼神经行为影响研究[J]. 生态毒理学报, 2022, 17(5): 362-372. doi: 10.7524/AJE.1673-5897.20211028003
Liu Hongli, Zhang Yanning, Mao Liangang, Zhu Lizhen, Liu Xingang, Jiang Hongyun, Zhang Lan. Neurobehavioral Effect of Chronic Flonicamid Exposure in Adult Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 362-372. doi: 10.7524/AJE.1673-5897.20211028003
Citation: Liu Hongli, Zhang Yanning, Mao Liangang, Zhu Lizhen, Liu Xingang, Jiang Hongyun, Zhang Lan. Neurobehavioral Effect of Chronic Flonicamid Exposure in Adult Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 362-372. doi: 10.7524/AJE.1673-5897.20211028003

氟啶虫酰胺慢性暴露对斑马鱼神经行为影响研究

    通讯作者: 张兰, E-mail: lanzhang@ippcaas.cn
    作者简介: 刘红丽(1997-),女,硕士研究生,研究方向为农药毒理学,E-mail:hongliliu01@126.com
  • 中国农业科学院植物保护研究所, 北京 100193
基金项目:

国家自然科学基金青年基金项目(31801769)

摘要: 氟啶虫酰胺是一种高选择性杀虫剂,对蚜虫等刺吸式口器害虫具有很好的神经毒性和快速拒食活性,是目前唯一被报道的作用于内向整流钾离子通道的杀虫剂。为了更科学、合理地使用氟啶虫酰胺,开展氟啶虫酰胺对环境非靶标生物毒性及其机制研究具有重要意义。本研究以斑马鱼(Danio rerio)为研究对象,研究环境相关浓度氟啶虫酰胺慢性暴露21 d对斑马鱼的神经行为毒性。结果表明,氟啶虫酰胺浓度为1、10和100 μg·L-1时,氟啶虫酰胺慢性暴露对被试斑马鱼成鱼焦虑样行为以及学习、记忆行为造成一定影响;被试斑马鱼多巴胺和皮质醇的含量有一定的增高趋势,但与对照组相比无显著差异(P>0.05);与神经行为相关基因线粒体外膜蛋白2(mitoguardin 2,miga2)和黄嘌呤脱氢酶(xanthine dehydrogenase,xdh)的表达水平发生显著改变(P<0.05);而腺苷脱氨酶(adenosine deaminase,ada)、干扰素调节因子1(interferon regulatory factor 1,irf1)和线粒体融合蛋白2(mitofusin 2,mfn2)3个基因的表达量无显著性影响(P>0.05)。因此,斑马鱼成鱼暴露于1、10和100 μg·L-1的氟啶虫酰胺21 d后,其行为出现异常,线粒体和免疫功能受到影响。本研究对氟啶虫酰胺对水生生物毒性风险预警具有重要的参考价值。

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回