仇是胜, 柏亚罗, 顾林玲. 氟啶虫酰胺的研究开发及市场前景[J]. 现代农药, 2014, 13(5):6-11
Qiu S S, Bai Y L, Gu L L. Research, development and market prospect of flonicamid[J]. Modern Agrochemicals, 2014, 13(5):6-11(in Chinese)
|
苏建亚. 氟啶虫酰胺作用靶标:内向整流钾离子通道研究进展[J]. 农药学学报, 2019, 21(2):131-139
Su J Y. Molecular target of flonicamid:Inward-rectifying potassium channels[J]. Chinese Journal of Pesticide Science, 2019, 21(2):131-139(in Chinese)
|
Sparks T C, Crossthwaite A J, Nauen R, et al. Insecticides, biologics and nematicides:Updates to IRAC's mode of action classification:A tool for resistance management[J]. Pesticide Biochemistry and Physiology, 2020, 167:104587
|
Ren M M, Niu J G, Hu B, et al. Block of Kir channels by flonicamid disrupts salivary and renal excretion of insect pests[J]. Insect Biochemistry and Molecular Biology, 2018, 99:17-26
|
沈娟. 新型杀虫剂:氟啶虫酰胺对蚜虫的生物学活性[J]. 世界农药, 2011, 33(5):19-22
|
Hibino H, Inanobe A, Furutani K, et al. Inwardly rectifying potassium channels:Their structure, function, and physiological roles[J]. Physiological Reviews, 2010, 90(1):291-366
|
Piermarini P M, Inocente E A, Acosta N, et al. Inward rectifier potassium (Kir) channels in the soybean aphid Aphis glycines:Functional characterization, pharmacology, and toxicology[J]. Journal of Insect Physiology, 2018, 110:57-65
|
Li Z L, Davis J A, Swale D R. Chemical inhibition of Kir channels reduces salivary secretions and phloem feeding of the cotton aphid, Aphis gossypii (Glover)[J]. Pest Management Science, 2019, 75(10):2725-2734
|
Meng X K, Wu Z L, Yang X M, et al. Flonicamid and knockdown of inward rectifier potassium channel gene CsKir2B adversely affect the feeding and development of Chilo suppressalis[J]. Pest Management Science, 2021, 77(4):2045-2053
|
Metcalfe C D, Helm P, Paterson G, et al. Pesticides related to land use in watersheds of the Great Lakes Basin[J]. Science of the Total Environment, 2019, 648:681-692
|
Yu Z M, Li X F, Wang S R, et al. The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China[J]. Environmental Pollution, 2021, 284:117358
|
张亦冰. 新颖杀虫剂:氟啶虫酰胺[J]. 世界农药, 2010, 32(1):54-56
|
Fishman M C. Genomics. Zebrafish:The canonical vertebrate[J]. Science, 2001, 294(5545):1290-1291
|
Gerlai R. Zebrafish and relational memory:Could a simple fish be useful for the analysis of biological mechanisms of complex vertebrate learning?[J]. Behavioural Processes, 2017, 141:242-250
|
Viscarra F, González-Gutierrez J, Esparza E, et al. Nicotinic antagonist UFR2709 inhibits nicotine reward and decreases anxiety in zebrafish[J]. Molecules, 2020, 25(13):E2998
|
Zhang H, Zhao L J. Influence of sublethal doses of acetamiprid and halosulfuron-methyl on metabolites of zebra fish (Brachydanio rerio)[J]. Aquatic Toxicology, 2017, 191:85-94
|
Crosby E B, Bailey J M, Oliveri A N, et al. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish[J]. Neurotoxicology and Teratology, 2015, 49:81-90
|
孙智慧, 贾顺姬, 孟安明. 斑马鱼:在生命科学中畅游[J]. 生命科学, 2006, 18(5):431-436
Sun Z H, Jia S J, Meng A M. Zebrafish:Swimming in life sciences[J]. Chinese Bulletin of Life Sciences, 2006, 18(5):431-436(in Chinese)
|
Egan R J, Bergner C L, Hart P C, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish[J]. Behavioural Brain Research, 2009, 205(1):38-44
|
Maximino C, de Brito T M, da Silva Batista A W, et al. Measuring anxiety in zebrafish:A critical review[J]. Behavioural Brain Research, 2010, 214(2):157-171
|
Zhang S H, Liu X D, Sun M Z, et al. Reversal of reserpine-induced depression and cognitive disorder in zebrafish by sertraline and Traditional Chinese Medicine (TCM)[J]. Behavioral and Brain Functions, 2018, 14(1):13
|
Benvenutti R, Marcon M, Gallas-Lopes M, et al. Swimming in the maze:An overview of maze apparatuses and protocols to assess zebrafish behavior[J]. Neuroscience and Biobehavioral Reviews, 2021, 127:761-778
|
马明, 陈默, 王鸣华. 氟啶虫酰胺高效液相色谱分析方法研究[J]. 世界农药, 2015, 37(3):51-53
Ma M, Chen M, Wang M H. Quantitative analysis of flonicamid by HPLC[J]. World Pesticides, 2015, 37(3):51-53(in Chinese)
|
Dong G P, Li X, Han G X, et al. Zebrafish neuro-behavioral profiles altered by acesulfame (ACE) within the range of "no observed effect concentrations (NOECs)"[J]. Chemosphere, 2020, 243:125431
|
Pilehvar A, Town R M, Blust R. The effect of copper on behaviour, memory, and associative learning ability of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2020, 188:109900
|
Cristalli G, Costanzi S, Lambertucci C, et al. Adenosine deaminase:Functional implications and different classes of inhibitors[J]. Medicinal Research Reviews, 2001, 21(2):105-128
|
Sauer A V, Hernandez R J, Fumagalli F, et al. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients[J]. Scientific Reports, 2017, 7:40136
|
李雪平, 蔡晓丽, 曹立辉. 干扰素调节因子家族成员及功能简述[J]. 中国动物保健, 2020, 22(7):71-72
, 77
|
应岚, 卢中秋, 姚咏明. 线粒体融合蛋白2的结构与功能研究进展[J]. 生理科学进展, 2016, 47(2):108-112
|
刘晓满. MIGA1/2促进线粒体融合并维持雌性小鼠生殖力[D]. 杭州:浙江大学, 2015:6-9 Liu X M. MIGA1/2
Promote mitochondria fusion and are essential for female mouse fertility[D]. Hangzhou:Zhejiang University, 2015:6-9(in Chinese)
|
Fan K Q, Li Y Y, Wang H L, et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior[J]. Cell, 2019, 179(4):864-879
|
Schultz W. Multiple functions of dopamine neurons[J]. F1000 Biology Reports, 2010, 2:2
|
Ramsay J M, Feist G W, Varga Z M, et al. Whole-body cortisol is an indicator of crowding stress in adult zebrafish, Danio rerio[J]. Aquaculture, 2006, 258(1-4):565-574
|
Levin E D, Bencan Z, Cerutti D T. Anxiolytic effects of nicotine in zebrafish[J]. Physiology & Behavior, 2007, 90(1):54-58
|
Silic M R, Murata S H, Park S J, et al. Evolution of inwardly rectifying potassium channels and their gene expression in zebrafish embryos[J]. Developmental Dynamics:An Official Publication of the American Association of Anatomists, 2022, 251(4):687-713
|
Kubo Y, Adelman J P, Clapham D E, et al. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels[J]. Pharmacological Reviews, 2005, 57(4):509-526
|
Pattnaik B R, Asuma M P, Spott R, et al. Genetic defects in the hotspot of inwardly rectifying K(+) (Kir) channels and their metabolic consequences:A review[J]. Molecular Genetics and Metabolism, 2012, 105(1):64-72
|