多菌灵和苯醚甲环唑对SK-N-SH细胞的联合毒性效应
Combined Toxic Effects of Carbendazim and Difenoconazole on SK-N-SH Cells
-
摘要: 生蔬中的农药残留会导致农药在人体内蓄积并产生危害,尤其是农药混合残留可能产生农药“鸡尾酒”效应,导致毒性效应叠加、增强或减弱。因此研究农药混合物的联合毒性效应及机制对食品安全风险评估具有重要意义。本研究以人神经瘤细胞母细胞(SK-N-SH细胞)为模型,以等毒性配比法设计联合细胞毒性实验,采用联合指数方法探讨多菌灵和苯醚甲环唑的联合细胞毒性。此外,采用析因设计探讨二者对SK-N-SH细胞内活性氧(reactive oxygen species,ROS)生成的联合作用。结果显示,在不同效应水平,多菌灵和苯醚甲环唑对SK-N-SH细胞活力表现出不同的联合作用模式。当混合物的效应水平为0~50%时,多菌灵和苯醚甲环唑的毒性效应表现为拮抗作用;混合物的效应水平为50%~100%时,多菌灵和苯醚甲环唑表现为协同作用。此外,当苯醚甲环唑浓度较低时(16.88 μmol·L-1),二者对ROS的生成表现为拮抗作用;当苯醚甲环唑浓度较高时(22.08 μmol·L-1),二者对ROS的生成表现为协同作用。结果提示多菌灵和苯醚甲环唑具有联合神经毒性,且ROS生成的氧化应激机制在这二者的联合神经毒性中发挥作用。此研究结果为农药复合暴露对人类健康的风险提供实验依据。Abstract: Pesticide residues in fruits and vegetables can cause the accumulation of pesticides and harm to the human body. In particular, mixed pesticide residues may produce a pesticide cocktail effect, resulting in superimposition, enhancement or reduction of toxic effects. Therefore, studying the combined toxic effects and mechanisms of pesticide mixtures is of great significance to food safety risk assessment. In this study, human neuroma cell blasts (SK-N-SH cells) were used as a cell model. The combined cytotoxicity assay was designed under the condition of equal toxicity ratio. The combined cytotoxic effects of carbendazim and difenoconazole were evaluated by the combination index analysis. In addition, a factorial design was adopted to assess the combined effects of these two on the production of reactive oxygen species (ROS) in SK-N-SH cells. The results showed that carbendazim and difenoconazole exerted different combined effect modes on SK-N-SH cell viability at different effect level. When the effect level of the mixture was 0~50%, carbendazim and difenoconazole exerted antagonistic effects on SK-N-SH cell viability; when the effect level of the mixture was 50%~100%, the two showed synergistic effects on SK-N-SH cell viability. In addition, when the difenoconazole concentration was low (16.88 μmol·L-1), the two exerted antagonistic effects on the generation of ROS; when the difenoconazole concentration was high (22.08 μmol·L-1), the two had antagonistic effects on ROS generation. These results suggest that carbendazim and difenoconazole yield combined neurotoxicity, and the oxidative stress mechanism of ROS generation plays a role in the combined neurotoxicity of the two. The findings in this study provide experimental evidence for the risk of pesticide compound exposure to human health.
-
Key words:
- pesticide /
- carbendazim /
- difenoconazole /
- cell toxicity /
- combined effect
-
-
Duan Y, Guan N, Li P P, et al. Monitoring and dietary exposure assessment of pesticide residues in cowpea (Vigna unguiculata L. Walp) in Hainan, China[J]. Food Control, 2016, 59:250-255 Yu Y, Hu S K, Yang Y X, et al. Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013[J]. BMC Public Health, 2017, 18(1):91 Fan R Q, Zhang W J, Li L Z, et al. Individual and synergistic toxic effects of carbendazim and chlorpyrifos on zebrafish embryonic development[J]. Chemosphere, 2021, 280:130769 Garcia M S, Cavalcante D N C, Araújo Santiago M D S, et al. Reproductive toxicity in male juvenile rats:Antagonistic effects between isolated agrochemicals and in binary or ternary combinations[J]. Ecotoxicology and Environmental Safety, 2021, 209:111766 Qin G F, Chen Y, He F R, et al. Risk assessment of fungicide pesticide residues in vegetables and fruits in the mid-western region of China[J]. Journal of Food Composition and Analysis, 2021, 95:103663 Zhang Y D, Si W S, Chen L, et al. Determination and dietary risk assessment of 284 pesticide residues in local fruit cultivars in Shanghai, China[J]. Scientific Reports, 2021, 11(1):9681 Ezeoyili I C, Mgbenka B O, Atama C I, et al. Changes in brain acetylcholinesterase and oxidative stress biomarkers in African catfish exposed to carbendazim[J]. Journal of Aquatic Animal Health, 2019, 31(4):371-379 Liu J, Zhang P F, Zhao Y, et al. Low dose carbendazim disrupts mouse spermatogenesis might be through estrogen receptor related histone and DNA methylation[J]. Ecotoxicology and Environmental Safety, 2019, 176:242-249 Sanches A L M, Vieira B H, Reghini M V, et al. Single and mixture toxicity of abamectin and difenoconazole to adult zebrafish (Danio rerio)[J]. Chemosphere, 2017, 188:582-587 Jiang J H, Chen L Z, Wu S G, et al. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio)[J]. Environmental Pollution, 2020, 265(Pt A):114844 Zhu J S, Liu C L, Wang J Y, et al. Difenoconazole induces cardiovascular toxicity through oxidative stress-mediated apoptosis in early life stages of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2021, 216:112227 朱俭勋, 钟石, 王新全, 等. 桑园常用杀菌剂多菌灵诱导鼠源神经细胞PC12凋亡的研究[J]. 蚕业科学, 2016, 42(4):668-673 Zhu J X, Zhong S, Wang X Q, et al. A study on mouse neural cell PC12 apoptosis induced with carbendazim commonly used in mulberry field[J]. Science of Sericulture, 2016, 42(4):668-673(in Chinese)
Yoon C S, Jin J H, Park J H, et al. Toxic effects of carbendazim and n-butyl isocyanate, metabolites of the fungicide benomyl, on early development in the African clawed frog, Xenopus laevis[J]. Environmental Toxicology, 2008, 23(1):131-144 Hinfray N, Porcher J M, Brion F. Inhibition of rainbow trout (Oncorhynchus mykiss) P450 aromatase activities in brain and ovarian microsomes by various environmental substances[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2006, 144(3):252-262 Teng M M, Qi S Z, Zhu W T, et al. Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebrafish (Danio rerio)[J]. Environmental Pollution, 2018, 233:208-217 Teng M M, Qi S Z, Zhu W T, et al. Sex-specific effects of difenoconazole on the growth hormone endocrine axis in adult zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2017, 144:402-408 肖岚, 蔡文琴. 芳香化酶与脑的发育和再生的相关性[J]. 解剖科学进展, 2002, 8(1):48-51 Xiao L, Cai W Q. Correlation between aromatase and brain development and regeneration[J]. Progress of Anatomical Sciences, 2002, 8(1):48-51(in Chinese)
沈凌, 李占魁. 脑芳香化酶的表达特点及其生物学意义[J]. 实用儿科临床杂志, 2006, 21(22):1586-1588 Shen L, Li Z K. Expression characteristics and biological significance of brain aromatase[J]. Journal of Applied Clinical Pediatrics, 2006, 21(22):1586-1588(in Chinese)
Jimenez K, Solano K, Scholz C, et al. Early toxic effects in a central American native fish (Parachromis dovii) exposed to chlorpyrifos and difenoconazole[J]. Environmental Toxicology and Chemistry, 2021, 40(7):1940-1949 Bao Z W, Zhao Y, Wu A Y, et al. Sub-chronic carbendazim exposure induces hepatic glycolipid metabolism disorder accompanied by gut microbiota dysbiosis in adult zebrafish (Daino rerio)[J]. The Science of the Total Environment, 2020, 739:140081 Jin Y X, Zeng Z Y, Wu Y, et al. Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis[J]. Toxicological Sciences, 2015, 147(1):116-126 Mu X Y, Wang K, Chai T T, et al. Sex specific response in cholesterol level in zebrafish (Danio rerio) after long-term exposure of difenoconazole[J]. Environmental Pollution, 2015, 197:278-286 Jiang J H, Chen L Z, Wu S G, et al. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio)[J]. Environmental Pollution, 2020, 265(Pt A):114844 Salihu M, Ajayi B O, Adedara I A, et al. 6-Gingerol-rich fraction from Zingiber officinale ameliorates carbendazim-induced endocrine disruption and toxicity in testes and epididymis of rats[J]. Andrologia, 2017, 49(5):13 Li H T, Zhang P F, Zhao Y, et al. Low doses of carbendazim and chlorothalonil synergized to impair mouse spermatogenesis through epigenetic pathways[J]. Ecotoxicology and Environmental Safety, 2020, 188:109908 Dong X C, Zhang L M, Chen M, et al. Exposure to difenoconazole inhibits reproductive ability in male marine medaka (Oryzias melastigma)[J]. Journal of Environmental Sciences, 2018, 63:126-132 Pereira V R, Pereira D R, de Melo Tavares Vieira K C, et al. Sperm quality of rats exposed to difenoconazole using classical parameters and surface-enhanced Raman scattering:Classification performance by machine learning methods[J]. Environmental Science and Pollution Research International, 2019, 26(34):35253-35265 Songür S H, Koçkaya E A, Selmanoĝlu G, et al. Dose-dependent effects of carbendazim on rat thymus[J]. Cell Biochemistry and Function, 2005, 23(6):457-460 Jiang J H, Wu S G, Wang Y H, et al. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development[J]. Toxicology in Vitro:An International Journal Published in Association With BIBRA, 2015, 29(7):1473-1481 Jiang J H, Wu S G, Wu C X, et al. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio)[J]. Fish & Shellfish Immunology, 2014, 41(2):493-500 Farag A, Ebrahim H, ElMazoudy R, et al. Developmental toxicity of fungicide carbendazim in female mice[J]. Birth Defects Research Part B, Developmental and Reproductive Toxicology, 2011, 92(2):122-130 Mu X Y, Chai T T, Wang K, et al. The developmental effect of difenoconazole on zebrafish embryos:A mechanism research[J]. Environmental Pollution, 2016, 212:18-26 Fu D J, Li P, Song J, et al. Mechanisms of synergistic neurotoxicity induced by two high risk pesticide residues:Chlorpyrifos and carbofuran via oxidative stress[J]. Toxicology in Vitro:An International Journal Published in Association With BIBRA, 2019, 54:338-344 Raszewski G, Lemieszek M K, Łukawski K, et al. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y[J]. Basic & Clinical Pharmacology & Toxicology, 2015, 116(2):158-167 宋远超. 多菌灵对雄性大鼠生殖毒性机制的研究[D]. 济南:济南大学, 2011:20-23 Song Y C. Study on the mechanism of the carbendazim-induced reproductive toxicity in male rats[D]. Jinan:University of Jinan, 2011:20 -23(in Chinese)
包凌玲. 苯醚甲环唑诱导HepG2细胞毒性及其与CYP3A4相互作用机制研究[D]. 杭州:浙江大学, 2015:23-24 Bao L L. Investigation of difenoconazole-induced HepG2 cell apoptosis and the molecular mechanism of its interactions with CYP3 A4[D]. Hangzhou:Zhejiang University, 2015:23-24(in Chinese)
Zhao H J, Wang Y, Guo M H, et al. Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp:Involvement of blood-brain barrier, oxidative stress and apoptosis[J]. Science of the Total Environment, 2021, 762:143054 Wang X, Ni H F, Xu W P, et al. Difenoconazole induces oxidative DNA damage and mitochondria mediated apoptosis in SH-SY5Y cells[J]. Chemosphere, 2021, 283:131160 Naughton S X, Terry A V Jr. Neurotoxicity in acute and repeated organophosphate exposure[J]. Toxicology, 2018, 408:101-112 Colle D, Farina M, Ceccatelli S, et al. Paraquat and maneb exposure alters rat neural stem cell proliferation by inducing oxidative stress:New insights on pesticide-induced neurodevelopmental toxicity[J]. Neurotoxicity Research, 2018, 34(4):820-833 Singh N, Lawana V, Luo J, et al. Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity:Implications for mitochondria mediated oxidative stress signaling events[J]. Neurobiology of Disease, 2018, 117:82-113 Mu X Y, Chai T T, Wang K, et al. Occurrence and origin of sensitivity toward difenoconazole in zebrafish (Danio reio) during different life stages[J]. Aquatic Toxicology, 2015, 160:57-68 Zhang S Y, Li T Y, Zhang Y B, et al. A new brominated chalcone derivative suppresses the growth of gastric cancer cells in vitro and in vivo involving ROS mediated up-regulation of DR5 and 4 expression and apoptosis[J]. Toxicology and Applied Pharmacology, 2016, 309:77-86 -

计量
- 文章访问数: 2279
- HTML全文浏览数: 2279
- PDF下载数: 101
- 施引文献: 0