双酚P对斑马鱼的生长和发育毒性

杨倩, 任文娟, 刘济宁, 汪贞. 双酚P对斑马鱼的生长和发育毒性[J]. 生态毒理学报, 2022, 17(5): 383-392. doi: 10.7524/AJE.1673-5897.20211004001
引用本文: 杨倩, 任文娟, 刘济宁, 汪贞. 双酚P对斑马鱼的生长和发育毒性[J]. 生态毒理学报, 2022, 17(5): 383-392. doi: 10.7524/AJE.1673-5897.20211004001
Yang Qian, Ren Wenjuan, Liu Jining, Wang Zhen. Developmental Toxicity of Bisphenol P on Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 383-392. doi: 10.7524/AJE.1673-5897.20211004001
Citation: Yang Qian, Ren Wenjuan, Liu Jining, Wang Zhen. Developmental Toxicity of Bisphenol P on Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 383-392. doi: 10.7524/AJE.1673-5897.20211004001

双酚P对斑马鱼的生长和发育毒性

    作者简介: 杨倩(1986-),女,博士,研究方向为生态毒理学,E-mail:jsyqhappy@126.com
    通讯作者: 汪贞, E-mail: wangzhen@nies.org
  • 基金项目:

    国家重点研发计划课题(2019YFC1803404)

  • 中图分类号: X171.5

Developmental Toxicity of Bisphenol P on Zebrafish

    Corresponding author: Wang Zhen, wangzhen@nies.org
  • Fund Project:
  • 摘要: 双酚A (bisphenol A,BPA)是一种典型的内分泌干扰物,目前许多国家出台了管控措施,因此一些BPA类似物,包括双酚P (bisphenol P,BPP)被开发用来替代BPA。目前很多研究发现BPA类似物具有与BPA相似的毒性效应,但是关于BPP毒性效应的研究还比较缺乏。本文以斑马鱼为研究模型,将胚胎暴露于0.1、0.2、0.3、0.4、0.6和0.8 mg·L-1的BPP中至受精后60 dpf (days post fertilization,dpf),研究BPP对斑马鱼的发育毒性和内分泌干扰效应。结果表明,斑马鱼7 dpf-孵化率的降低和8 dpf-累积死亡率的升高均具有剂量-效应关系,半数效应浓度(50% effective concentration,EC50)值分别为0.580 mg·L-1和0.247 mg·L-1。幼体生长阶段,30 dpf-畸形率的EC50值为0.380 mg·L-1;对于体长和体质量抑制的30 d-EC50≥0.6 mg·L-1。斑马鱼的“假定”特定生长率(specific growth rate,SGR)和浓度存在显著的剂量-效应关系,随着BPP浓度增高,假定特定生长率均呈下降趋势,并且45~60 d的体质量和体长特定生长率的抑制效应浓度比30~45 d更低。激素水平测定结果表明,BPP暴露显著降低了斑马鱼体内的雄激素水平,提高了雌激素和卵黄蛋白原的水平。本研究结果表明,BPP对斑马鱼胚胎及幼鱼的生长发育具有一定的毒性效应。
  • 加载中
  • Chen D, Kannan K, Tan H L, et al. Bisphenol analogues other than BPA:Environmental occurrence, human exposure, and toxicity-A review[J]. Environmental Science & Technology, 2016, 50(11):5438-5453
    Yamazaki E, Yamashita N, Taniyasu S, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122:565-572
    Liao C Y, Kannan K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure[J]. Journal of Agricultural and Food Chemistry, 2013, 61(19):4655-4662
    Morgan M K, Clifton M S. Exposure to triclosan and bisphenol analogues B, F, P, S and Z in repeated duplicate-diet solid food samples of adults[J]. Toxics, 2021, 9(3):47
    Li A J, Zhuang T F, Shi W, et al. Serum concentration of bisphenol analogues in pregnant women in China[J]. The Science of the Total Environment, 2020, 707:136100
    Zhang H, Quan Q, Zhang M Y, et al. Occurrence of bisphenol A and its alternatives in paired urine and indoor dust from Chinese university students:Implications for human exposure[J]. Chemosphere, 2020, 247:125987
    Liu J C, Zhang L Y, Lu G H, et al. Occurrence, toxicity and ecological risk of bisphenol A analogues in aquatic environment-A review[J]. Ecotoxicology and Environmental Safety, 2021, 208:111481
    任文娟, 汪贞, 杨先海, 等. 双酚A及其类似物对斑马鱼成鱼及胚胎的急性毒性[J]. 生态与农村环境学报, 2017, 33(4):372-378

    Ren W J, Wang Z, Yang X H, et al. Acute toxicity effect of bisphenol A and its analogues on adult and embryo of zebrafish[J]. Journal of Ecology and Rural Environment, 2017, 33(4):372-378(in Chinese)

    Lee S, Liu X S, Takeda S, et al. Genotoxic potentials and related mechanisms of bisphenol A and other bisphenol compounds:A comparison study employing chicken DT40 cells[J]. Chemosphere, 2013, 93(2):434-440
    Rosenmai A K, Dybdahl M, Pedersen M, et al. Are structural analogues to bisphenol A safe alternatives?[J]. Toxicological Sciences, 2014, 139(1):35-47
    Wang L, Zhou L J, Fan D L, et al. Bisphenol P activates hormonal genes and introduces developmental outcomes in Chironomus tentans[J]. Ecotoxicology and Environmental Safety, 2019, 174:675-682
    Ike M, Chen M Y, Danzl E, et al. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2006, 53(6):153-159
    Danzl E, Sei K, Soda S, et al. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater[J]. International Journal of Environmental Research and Public Health, 2009, 6(4):1472-1484
    Arnot J A, Gobas F A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms[J]. Environmental Reviews, 2006, 14(4):257-297
    Organisation for Economic Co-operation and Development (OECD). Guideline for the testing of chemicals, 210 fish, early-life stage toxicity test[S]. Paris:OECD, 2000
    Organisation for Economic Co-operation and Development (OECD). Test No. 215:Fish, juvenile growth test[R]. Paris:OECD, 2000
    王雪, 王希敏, 刘可春, 等. 斑马鱼胚胎在毒理学研究中的应用[J]. 山东科学, 2011, 24(6):49-52

    Wang X, Wang X M, Liu K C, et al. Application of zebrafish embryo in toxicology[J]. Shandong Science, 2011, 24(6):49-52(in Chinese)

    Panzica-Kelly J M, Zhang C X, Augustine-Rauch K A. Optimization and performance assessment of the chorion-off[dechorinated] zebrafish developmental toxicity assay[J]. Toxicological Sciences, 2015, 146(1):127-134
    Shi J C, Jiao Z H, Zheng S, et al. Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring[J]. Chemosphere, 2015, 128:252-257
    Yang Q, Yang X H, Liu J N, et al. Effects of BPF on steroid hormone homeostasis and gene expression in the hypothalamic-pituitary-gonadal axis of zebrafish[J]. Environmental Science and Pollution Research, 2017, 24(26):21311-21322
    Duan Z H, Zhu L, Zhu L Y, et al. Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo[J]. Ecotoxicology and Environmental Safety, 2008, 71(3):774-780
    Yang Q, Yang X H, Liu J N, et al. Effects of exposure to BPF on development and sexual differentiation during early life stages of zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2018, 210:44-56
    Song M Y, Liang D, Liang Y, et al. Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio)[J]. Chemosphere, 2014, 112:275-281
    Pang S, Guo M C, Zhang X, et al. Myclobutanil developmental toxicity, bioconcentration and sex specific response in cholesterol in zebrafish (Danio rerio)[J]. Chemosphere, 2020, 242:125209
    Liang X M, Wang F, Li K B, et al. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio):Developmental toxicity, oxidative stress and immunotoxicity[J]. Fish & Shellfish Immunology, 2020, 96:262-269
    Chen G L, Wang L P, Li W P, et al. Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos[J]. Ecotoxicology and Environmental Safety, 2020, 194:110444
    Jin H M, Ji C, Ren F, et al. AHR-mediated oxidative stress contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish embryos[J]. Journal of Hazardous Materials, 2020, 385:121521
    Tu W Q, Niu L L, Liu W P, et al. Embryonic exposure to butachlor in zebrafish (Danio rerio):Endocrine disruption, developmental toxicity and immunotoxicity[J]. Ecotoxicology and Environmental Safety, 2013, 89:189-195
    Yao H Z, Yu J P, Zhou Y, et al. The embryonic developmental effect of sedaxane on zebrafish (Danio rerio)[J]. Chemosphere, 2018, 197:299-305
    Pelka K E, Henn K, Keck A, et al. Size does matter-Determination of the critical molecular size for the uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos[J]. Aquatic Toxicology, 2017, 185:1-10
    Liu J C, Zhang L Y, Lu G H, et al. Occurrence, toxicity and ecological risk of bisphenol A analogues in aquatic environment-A review[J]. Ecotoxicology and Environmental Safety, 2021, 208:111481
    Goldstein K M, Seyler D E, Durand P, et al. Use of a rat ex-vivo testis culture method to assess toxicity of select known male reproductive toxicants[J]. Reproductive Toxicology, 2016, 60:92-103
    Siracusa J S, Yin L, Measel E, et al. Effects of bisphenol A and its analogs on reproductive health:A mini review[J]. Reproductive Toxicology, 2018, 79:96-123
    Adegoke E O, Rahman M S, Pang M G. Bisphenols threaten male reproductive health via testicular cells[J]. Frontiers in Endocrinology, 2020, 11:624
    Naderi M, Wong M Y, Gholami F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults[J]. Aquatic Toxicology, 2014, 148:195-203
    Yang Q, Yang X H, Liu J N, et al. Effects of BPF on steroid hormone homeostasis and gene expression in the hypothalamic-pituitary-gonadal axis of zebrafish[J]. Environmental Science and Pollution Research, 2017, 24(26):21311-21322
    Yang Q, Zhu Z Z, Liu Q, et al. Adverse effects of bisphenol B exposure on the thyroid and nervous system in early life stages of zebrafish[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2021, 250:109167
    Mu X Y, Huang Y, Li X X, et al. Developmental effects and estrogenicity of bisphenol A alternatives in a zebrafish embryo model[J]. Environmental Science & Technology, 2018, 52(5):3222-3231
    Le Fol V, Aït-Aïssa S, Sonavane M, et al. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays[J]. Ecotoxicology and Environmental Safety, 2017, 142:150-156
    杨倩, 杨先海, 刘济宁, 等. 双酚A替代物对雄性斑马鱼性激素及卵黄蛋白原水平的影响[J]. 南京工业大学学报:自然科学版, 2018, 40(5):6-13

    Yang Q, Yang X H, Liu J N, et al. Effects of bisphenol A and its substitutes on levels of steroid hormone and vitellogenin in adult male zebrafish[J]. Journal of Nanjing Tech University:Natural Science Edition, 2018, 40(5):6-13(in Chinese)

  • 加载中
计量
  • 文章访问数:  2773
  • HTML全文浏览数:  2773
  • PDF下载数:  126
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-04
杨倩, 任文娟, 刘济宁, 汪贞. 双酚P对斑马鱼的生长和发育毒性[J]. 生态毒理学报, 2022, 17(5): 383-392. doi: 10.7524/AJE.1673-5897.20211004001
引用本文: 杨倩, 任文娟, 刘济宁, 汪贞. 双酚P对斑马鱼的生长和发育毒性[J]. 生态毒理学报, 2022, 17(5): 383-392. doi: 10.7524/AJE.1673-5897.20211004001
Yang Qian, Ren Wenjuan, Liu Jining, Wang Zhen. Developmental Toxicity of Bisphenol P on Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 383-392. doi: 10.7524/AJE.1673-5897.20211004001
Citation: Yang Qian, Ren Wenjuan, Liu Jining, Wang Zhen. Developmental Toxicity of Bisphenol P on Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 383-392. doi: 10.7524/AJE.1673-5897.20211004001

双酚P对斑马鱼的生长和发育毒性

    通讯作者: 汪贞, E-mail: wangzhen@nies.org
    作者简介: 杨倩(1986-),女,博士,研究方向为生态毒理学,E-mail:jsyqhappy@126.com
  • 1. 南京财经大学食品科学与工程学院, 南京 210023;
  • 2. 天津河海标测技术检测有限公司, 天津 300450;
  • 3. 生态环境部南京环境科学研究所, 南京 210042
基金项目:

国家重点研发计划课题(2019YFC1803404)

摘要: 双酚A (bisphenol A,BPA)是一种典型的内分泌干扰物,目前许多国家出台了管控措施,因此一些BPA类似物,包括双酚P (bisphenol P,BPP)被开发用来替代BPA。目前很多研究发现BPA类似物具有与BPA相似的毒性效应,但是关于BPP毒性效应的研究还比较缺乏。本文以斑马鱼为研究模型,将胚胎暴露于0.1、0.2、0.3、0.4、0.6和0.8 mg·L-1的BPP中至受精后60 dpf (days post fertilization,dpf),研究BPP对斑马鱼的发育毒性和内分泌干扰效应。结果表明,斑马鱼7 dpf-孵化率的降低和8 dpf-累积死亡率的升高均具有剂量-效应关系,半数效应浓度(50% effective concentration,EC50)值分别为0.580 mg·L-1和0.247 mg·L-1。幼体生长阶段,30 dpf-畸形率的EC50值为0.380 mg·L-1;对于体长和体质量抑制的30 d-EC50≥0.6 mg·L-1。斑马鱼的“假定”特定生长率(specific growth rate,SGR)和浓度存在显著的剂量-效应关系,随着BPP浓度增高,假定特定生长率均呈下降趋势,并且45~60 d的体质量和体长特定生长率的抑制效应浓度比30~45 d更低。激素水平测定结果表明,BPP暴露显著降低了斑马鱼体内的雄激素水平,提高了雌激素和卵黄蛋白原的水平。本研究结果表明,BPP对斑马鱼胚胎及幼鱼的生长发育具有一定的毒性效应。

English Abstract

参考文献 (40)

返回顶部

目录

/

返回文章
返回