双酚P对斑马鱼的生长和发育毒性
Developmental Toxicity of Bisphenol P on Zebrafish
-
摘要: 双酚A (bisphenol A,BPA)是一种典型的内分泌干扰物,目前许多国家出台了管控措施,因此一些BPA类似物,包括双酚P (bisphenol P,BPP)被开发用来替代BPA。目前很多研究发现BPA类似物具有与BPA相似的毒性效应,但是关于BPP毒性效应的研究还比较缺乏。本文以斑马鱼为研究模型,将胚胎暴露于0.1、0.2、0.3、0.4、0.6和0.8 mg·L-1的BPP中至受精后60 dpf (days post fertilization,dpf),研究BPP对斑马鱼的发育毒性和内分泌干扰效应。结果表明,斑马鱼7 dpf-孵化率的降低和8 dpf-累积死亡率的升高均具有剂量-效应关系,半数效应浓度(50% effective concentration,EC50)值分别为0.580 mg·L-1和0.247 mg·L-1。幼体生长阶段,30 dpf-畸形率的EC50值为0.380 mg·L-1;对于体长和体质量抑制的30 d-EC50≥0.6 mg·L-1。斑马鱼的“假定”特定生长率(specific growth rate,SGR)和浓度存在显著的剂量-效应关系,随着BPP浓度增高,假定特定生长率均呈下降趋势,并且45~60 d的体质量和体长特定生长率的抑制效应浓度比30~45 d更低。激素水平测定结果表明,BPP暴露显著降低了斑马鱼体内的雄激素水平,提高了雌激素和卵黄蛋白原的水平。本研究结果表明,BPP对斑马鱼胚胎及幼鱼的生长发育具有一定的毒性效应。Abstract: Bisphenol A (BPA) has been banned in certain products due to its endocrine disrupting effects. Giving the adverse effects, some bisphenol analogs such as bisphenol P (BPP) has been developed to substitute BPA in manufacture of polycarbonate and epoxy resins. Previous studies showed that bisphenol analogs possess similar effects in physiological systems as BPA. However, studies on toxic effects of BPP to aquatic organisms are still limited. In this study, zebrafish embryos were exposed to BPP until 60 days post fertilization (dpf) to investigate the developmental toxicity and endocrine disrupting effects of BPP. The results revealed that BPP inhibited the hatching rates of 7 dpf zebrafish larvae and increased the mortality of 8 dpf larvae in a dose-dependent manner, with 50% effective concentration (EC50) of about 0.580 mg·L-1 and 0.247 mg·L-1, respectively. For juvenile zebrafish, the EC50 value of inhibition of body length and weight of BPP was ≥ 0.6 mg·L-1. The specific growth rate (SGR) of zebrafish decreased in a dose-dependent manner after exposure to BPP. The effective BPP concentration on inhibition of body length and weight between 45~60 d was much lower than that between 30~45 d. In addition, homogenate testosterone (T) levels decreased, while 17β-estradiol (E2) and vitellogenin levels increased significantly in male zebrafish after exposure to BPP. The results demonstrated that the BPP exposure exhibited developmental toxicity on zebrafish.
-
Key words:
- bisphenol analogs /
- bisphenol P /
- zebrafish /
- developmental toxicity /
- endocrine disrupting effects
-
-
Chen D, Kannan K, Tan H L, et al. Bisphenol analogues other than BPA:Environmental occurrence, human exposure, and toxicity-A review[J]. Environmental Science & Technology, 2016, 50(11):5438-5453 Yamazaki E, Yamashita N, Taniyasu S, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122:565-572 Liao C Y, Kannan K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure[J]. Journal of Agricultural and Food Chemistry, 2013, 61(19):4655-4662 Morgan M K, Clifton M S. Exposure to triclosan and bisphenol analogues B, F, P, S and Z in repeated duplicate-diet solid food samples of adults[J]. Toxics, 2021, 9(3):47 Li A J, Zhuang T F, Shi W, et al. Serum concentration of bisphenol analogues in pregnant women in China[J]. The Science of the Total Environment, 2020, 707:136100 Zhang H, Quan Q, Zhang M Y, et al. Occurrence of bisphenol A and its alternatives in paired urine and indoor dust from Chinese university students:Implications for human exposure[J]. Chemosphere, 2020, 247:125987 Liu J C, Zhang L Y, Lu G H, et al. Occurrence, toxicity and ecological risk of bisphenol A analogues in aquatic environment-A review[J]. Ecotoxicology and Environmental Safety, 2021, 208:111481 任文娟, 汪贞, 杨先海, 等. 双酚A及其类似物对斑马鱼成鱼及胚胎的急性毒性[J]. 生态与农村环境学报, 2017, 33(4):372-378 Ren W J, Wang Z, Yang X H, et al. Acute toxicity effect of bisphenol A and its analogues on adult and embryo of zebrafish[J]. Journal of Ecology and Rural Environment, 2017, 33(4):372-378(in Chinese)
Lee S, Liu X S, Takeda S, et al. Genotoxic potentials and related mechanisms of bisphenol A and other bisphenol compounds:A comparison study employing chicken DT40 cells[J]. Chemosphere, 2013, 93(2):434-440 Rosenmai A K, Dybdahl M, Pedersen M, et al. Are structural analogues to bisphenol A safe alternatives?[J]. Toxicological Sciences, 2014, 139(1):35-47 Wang L, Zhou L J, Fan D L, et al. Bisphenol P activates hormonal genes and introduces developmental outcomes in Chironomus tentans[J]. Ecotoxicology and Environmental Safety, 2019, 174:675-682 Ike M, Chen M Y, Danzl E, et al. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2006, 53(6):153-159 Danzl E, Sei K, Soda S, et al. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater[J]. International Journal of Environmental Research and Public Health, 2009, 6(4):1472-1484 Arnot J A, Gobas F A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms[J]. Environmental Reviews, 2006, 14(4):257-297 Organisation for Economic Co-operation and Development (OECD). Guideline for the testing of chemicals, 210 fish, early-life stage toxicity test[S]. Paris:OECD, 2000 Organisation for Economic Co-operation and Development (OECD). Test No. 215:Fish, juvenile growth test[R]. Paris:OECD, 2000 王雪, 王希敏, 刘可春, 等. 斑马鱼胚胎在毒理学研究中的应用[J]. 山东科学, 2011, 24(6):49-52 Wang X, Wang X M, Liu K C, et al. Application of zebrafish embryo in toxicology[J]. Shandong Science, 2011, 24(6):49-52(in Chinese)
Panzica-Kelly J M, Zhang C X, Augustine-Rauch K A. Optimization and performance assessment of the chorion-off[dechorinated] zebrafish developmental toxicity assay[J]. Toxicological Sciences, 2015, 146(1):127-134 Shi J C, Jiao Z H, Zheng S, et al. Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring[J]. Chemosphere, 2015, 128:252-257 Yang Q, Yang X H, Liu J N, et al. Effects of BPF on steroid hormone homeostasis and gene expression in the hypothalamic-pituitary-gonadal axis of zebrafish[J]. Environmental Science and Pollution Research, 2017, 24(26):21311-21322 Duan Z H, Zhu L, Zhu L Y, et al. Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo[J]. Ecotoxicology and Environmental Safety, 2008, 71(3):774-780 Yang Q, Yang X H, Liu J N, et al. Effects of exposure to BPF on development and sexual differentiation during early life stages of zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2018, 210:44-56 Song M Y, Liang D, Liang Y, et al. Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio)[J]. Chemosphere, 2014, 112:275-281 Pang S, Guo M C, Zhang X, et al. Myclobutanil developmental toxicity, bioconcentration and sex specific response in cholesterol in zebrafish (Danio rerio)[J]. Chemosphere, 2020, 242:125209 Liang X M, Wang F, Li K B, et al. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio):Developmental toxicity, oxidative stress and immunotoxicity[J]. Fish & Shellfish Immunology, 2020, 96:262-269 Chen G L, Wang L P, Li W P, et al. Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos[J]. Ecotoxicology and Environmental Safety, 2020, 194:110444 Jin H M, Ji C, Ren F, et al. AHR-mediated oxidative stress contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish embryos[J]. Journal of Hazardous Materials, 2020, 385:121521 Tu W Q, Niu L L, Liu W P, et al. Embryonic exposure to butachlor in zebrafish (Danio rerio):Endocrine disruption, developmental toxicity and immunotoxicity[J]. Ecotoxicology and Environmental Safety, 2013, 89:189-195 Yao H Z, Yu J P, Zhou Y, et al. The embryonic developmental effect of sedaxane on zebrafish (Danio rerio)[J]. Chemosphere, 2018, 197:299-305 Pelka K E, Henn K, Keck A, et al. Size does matter-Determination of the critical molecular size for the uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos[J]. Aquatic Toxicology, 2017, 185:1-10 Liu J C, Zhang L Y, Lu G H, et al. Occurrence, toxicity and ecological risk of bisphenol A analogues in aquatic environment-A review[J]. Ecotoxicology and Environmental Safety, 2021, 208:111481 Goldstein K M, Seyler D E, Durand P, et al. Use of a rat ex-vivo testis culture method to assess toxicity of select known male reproductive toxicants[J]. Reproductive Toxicology, 2016, 60:92-103 Siracusa J S, Yin L, Measel E, et al. Effects of bisphenol A and its analogs on reproductive health:A mini review[J]. Reproductive Toxicology, 2018, 79:96-123 Adegoke E O, Rahman M S, Pang M G. Bisphenols threaten male reproductive health via testicular cells[J]. Frontiers in Endocrinology, 2020, 11:624 Naderi M, Wong M Y, Gholami F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults[J]. Aquatic Toxicology, 2014, 148:195-203 Yang Q, Yang X H, Liu J N, et al. Effects of BPF on steroid hormone homeostasis and gene expression in the hypothalamic-pituitary-gonadal axis of zebrafish[J]. Environmental Science and Pollution Research, 2017, 24(26):21311-21322 Yang Q, Zhu Z Z, Liu Q, et al. Adverse effects of bisphenol B exposure on the thyroid and nervous system in early life stages of zebrafish[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2021, 250:109167 Mu X Y, Huang Y, Li X X, et al. Developmental effects and estrogenicity of bisphenol A alternatives in a zebrafish embryo model[J]. Environmental Science & Technology, 2018, 52(5):3222-3231 Le Fol V, Aït-Aïssa S, Sonavane M, et al. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays[J]. Ecotoxicology and Environmental Safety, 2017, 142:150-156 杨倩, 杨先海, 刘济宁, 等. 双酚A替代物对雄性斑马鱼性激素及卵黄蛋白原水平的影响[J]. 南京工业大学学报:自然科学版, 2018, 40(5):6-13 Yang Q, Yang X H, Liu J N, et al. Effects of bisphenol A and its substitutes on levels of steroid hormone and vitellogenin in adult male zebrafish[J]. Journal of Nanjing Tech University:Natural Science Edition, 2018, 40(5):6-13(in Chinese)
-

计量
- 文章访问数: 2773
- HTML全文浏览数: 2773
- PDF下载数: 126
- 施引文献: 0