Chen D, Kannan K, Tan H L, et al. Bisphenol analogues other than BPA:Environmental occurrence, human exposure, and toxicity-A review[J]. Environmental Science & Technology, 2016, 50(11):5438-5453
Yamazaki E, Yamashita N, Taniyasu S, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122:565-572
Liao C Y, Kannan K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure[J]. Journal of Agricultural and Food Chemistry, 2013, 61(19):4655-4662
Morgan M K, Clifton M S. Exposure to triclosan and bisphenol analogues B, F, P, S and Z in repeated duplicate-diet solid food samples of adults[J]. Toxics, 2021, 9(3):47
Li A J, Zhuang T F, Shi W, et al. Serum concentration of bisphenol analogues in pregnant women in China[J]. The Science of the Total Environment, 2020, 707:136100
Zhang H, Quan Q, Zhang M Y, et al. Occurrence of bisphenol A and its alternatives in paired urine and indoor dust from Chinese university students:Implications for human exposure[J]. Chemosphere, 2020, 247:125987
Liu J C, Zhang L Y, Lu G H, et al. Occurrence, toxicity and ecological risk of bisphenol A analogues in aquatic environment-A review[J]. Ecotoxicology and Environmental Safety, 2021, 208:111481
任文娟, 汪贞, 杨先海, 等. 双酚A及其类似物对斑马鱼成鱼及胚胎的急性毒性[J]. 生态与农村环境学报, 2017, 33(4):372-378 Ren W J, Wang Z, Yang X H, et al. Acute toxicity effect of bisphenol A and its analogues on adult and embryo of zebrafish[J]. Journal of Ecology and Rural Environment, 2017, 33(4):372-378(in Chinese)
Lee S, Liu X S, Takeda S, et al. Genotoxic potentials and related mechanisms of bisphenol A and other bisphenol compounds:A comparison study employing chicken DT40 cells[J]. Chemosphere, 2013, 93(2):434-440
Rosenmai A K, Dybdahl M, Pedersen M, et al. Are structural analogues to bisphenol A safe alternatives?[J]. Toxicological Sciences, 2014, 139(1):35-47
Wang L, Zhou L J, Fan D L, et al. Bisphenol P activates hormonal genes and introduces developmental outcomes in Chironomus tentans[J]. Ecotoxicology and Environmental Safety, 2019, 174:675-682
Ike M, Chen M Y, Danzl E, et al. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2006, 53(6):153-159
Danzl E, Sei K, Soda S, et al. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater[J]. International Journal of Environmental Research and Public Health, 2009, 6(4):1472-1484
Arnot J A, Gobas F A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms[J]. Environmental Reviews, 2006, 14(4):257-297
Organisation for Economic Co-operation and Development (OECD). Guideline for the testing of chemicals, 210 fish, early-life stage toxicity test[S]. Paris:OECD, 2000
Organisation for Economic Co-operation and Development (OECD). Test No. 215:Fish, juvenile growth test[R]. Paris:OECD, 2000
王雪, 王希敏, 刘可春, 等. 斑马鱼胚胎在毒理学研究中的应用[J]. 山东科学, 2011, 24(6):49-52 Wang X, Wang X M, Liu K C, et al. Application of zebrafish embryo in toxicology[J]. Shandong Science, 2011, 24(6):49-52(in Chinese)
Panzica-Kelly J M, Zhang C X, Augustine-Rauch K A. Optimization and performance assessment of the chorion-off[dechorinated] zebrafish developmental toxicity assay[J]. Toxicological Sciences, 2015, 146(1):127-134
Shi J C, Jiao Z H, Zheng S, et al. Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring[J]. Chemosphere, 2015, 128:252-257
Yang Q, Yang X H, Liu J N, et al. Effects of BPF on steroid hormone homeostasis and gene expression in the hypothalamic-pituitary-gonadal axis of zebrafish[J]. Environmental Science and Pollution Research, 2017, 24(26):21311-21322
Duan Z H, Zhu L, Zhu L Y, et al. Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo[J]. Ecotoxicology and Environmental Safety, 2008, 71(3):774-780
Yang Q, Yang X H, Liu J N, et al. Effects of exposure to BPF on development and sexual differentiation during early life stages of zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2018, 210:44-56
Song M Y, Liang D, Liang Y, et al. Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio)[J]. Chemosphere, 2014, 112:275-281
Pang S, Guo M C, Zhang X, et al. Myclobutanil developmental toxicity, bioconcentration and sex specific response in cholesterol in zebrafish (Danio rerio)[J]. Chemosphere, 2020, 242:125209
Liang X M, Wang F, Li K B, et al. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio):Developmental toxicity, oxidative stress and immunotoxicity[J]. Fish & Shellfish Immunology, 2020, 96:262-269
Chen G L, Wang L P, Li W P, et al. Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos[J]. Ecotoxicology and Environmental Safety, 2020, 194:110444
Jin H M, Ji C, Ren F, et al. AHR-mediated oxidative stress contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish embryos[J]. Journal of Hazardous Materials, 2020, 385:121521
Tu W Q, Niu L L, Liu W P, et al. Embryonic exposure to butachlor in zebrafish (Danio rerio):Endocrine disruption, developmental toxicity and immunotoxicity[J]. Ecotoxicology and Environmental Safety, 2013, 89:189-195
Yao H Z, Yu J P, Zhou Y, et al. The embryonic developmental effect of sedaxane on zebrafish (Danio rerio)[J]. Chemosphere, 2018, 197:299-305
Pelka K E, Henn K, Keck A, et al. Size does matter-Determination of the critical molecular size for the uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos[J]. Aquatic Toxicology, 2017, 185:1-10
Liu J C, Zhang L Y, Lu G H, et al. Occurrence, toxicity and ecological risk of bisphenol A analogues in aquatic environment-A review[J]. Ecotoxicology and Environmental Safety, 2021, 208:111481
Goldstein K M, Seyler D E, Durand P, et al. Use of a rat ex-vivo testis culture method to assess toxicity of select known male reproductive toxicants[J]. Reproductive Toxicology, 2016, 60:92-103
Siracusa J S, Yin L, Measel E, et al. Effects of bisphenol A and its analogs on reproductive health:A mini review[J]. Reproductive Toxicology, 2018, 79:96-123
Adegoke E O, Rahman M S, Pang M G. Bisphenols threaten male reproductive health via testicular cells[J]. Frontiers in Endocrinology, 2020, 11:624
Naderi M, Wong M Y, Gholami F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults[J]. Aquatic Toxicology, 2014, 148:195-203
Yang Q, Yang X H, Liu J N, et al. Effects of BPF on steroid hormone homeostasis and gene expression in the hypothalamic-pituitary-gonadal axis of zebrafish[J]. Environmental Science and Pollution Research, 2017, 24(26):21311-21322
Yang Q, Zhu Z Z, Liu Q, et al. Adverse effects of bisphenol B exposure on the thyroid and nervous system in early life stages of zebrafish[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2021, 250:109167
Mu X Y, Huang Y, Li X X, et al. Developmental effects and estrogenicity of bisphenol A alternatives in a zebrafish embryo model[J]. Environmental Science & Technology, 2018, 52(5):3222-3231
Le Fol V, Aït-Aïssa S, Sonavane M, et al. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays[J]. Ecotoxicology and Environmental Safety, 2017, 142:150-156
杨倩, 杨先海, 刘济宁, 等. 双酚A替代物对雄性斑马鱼性激素及卵黄蛋白原水平的影响[J]. 南京工业大学学报:自然科学版, 2018, 40(5):6-13 Yang Q, Yang X H, Liu J N, et al. Effects of bisphenol A and its substitutes on levels of steroid hormone and vitellogenin in adult male zebrafish[J]. Journal of Nanjing Tech University:Natural Science Edition, 2018, 40(5):6-13(in Chinese)