基于3D体外培养模型的化学物质肝毒性预测研究进展

闫路, 苟潇, 彭颖, 高瑞泽, 田明明, 张效伟. 基于3D体外培养模型的化学物质肝毒性预测研究进展[J]. 生态毒理学报, 2022, 17(1): 299-312. doi: 10.7524/AJE.1673-5897.20210930002
引用本文: 闫路, 苟潇, 彭颖, 高瑞泽, 田明明, 张效伟. 基于3D体外培养模型的化学物质肝毒性预测研究进展[J]. 生态毒理学报, 2022, 17(1): 299-312. doi: 10.7524/AJE.1673-5897.20210930002
Yan Lu, Gou Xiao, Peng Ying, Gao Ruize, Tian Mingming, Zhang Xiaowei. Advances in Predicting Hepatotoxicity of Chemicals based on 3D in vitro Culture Models[J]. Asian journal of ecotoxicology, 2022, 17(1): 299-312. doi: 10.7524/AJE.1673-5897.20210930002
Citation: Yan Lu, Gou Xiao, Peng Ying, Gao Ruize, Tian Mingming, Zhang Xiaowei. Advances in Predicting Hepatotoxicity of Chemicals based on 3D in vitro Culture Models[J]. Asian journal of ecotoxicology, 2022, 17(1): 299-312. doi: 10.7524/AJE.1673-5897.20210930002

基于3D体外培养模型的化学物质肝毒性预测研究进展

    作者简介: 闫路(1991-),女,博士研究生,研究方向为环境毒理学,E-mail:yanlu0507@126.com
    通讯作者: 张效伟, E-mail: zhangxw@nju.edu.cn
  • 基金项目:

    江苏省环保科研课题(2018001)

  • 中图分类号: X171.5

Advances in Predicting Hepatotoxicity of Chemicals based on 3D in vitro Culture Models

    Corresponding author: Zhang Xiaowei, zhangxw@nju.edu.cn
  • Fund Project:
  • 摘要: 精准预测化学物质肝毒性对保护人类生命健康安全具有重要意义。为了避免动物实验固有的物种间差异性和局限性,开发和利用与人源肝脏生理功能直接相关的体外模型至关重要。三维(3D)体外细胞培养模型相比于二维(2D)模型能更好地保留肝细胞代谢功能,再现肝脏内多种细胞相互作用的复杂环境,是体外模拟肝脏生理功能的一大进步,并初步在药物毒性评估方面获得应用的同时,也被引入到环境毒理学领域用于预测环境化学物质的肝毒性。本文介绍了目前常用3D体外细胞培养模型的制备方法,综述了其在环境化学物质(纳米材料、持久性有机污染物和新型有机污染物等)肝毒性预测方面的应用现状,最后探讨了3D肝细胞体外培养模型在有害结局路径指导下开展肝毒性预测的研究与应用前景。
  • 加载中
  • Trefts E, Gannon M, Wasserman D H. The liver[J]. Current Biology, 2017, 27(21):R1147-R1151
    Ortega-Alonso A, Andrade R J. Chronic liver injury induced by drugs and toxins[J]. Journal of Digestive Diseases, 2018, 19(9):514-521
    Tabernilla A, dos Santos Rodrigues B, Pieters A, et al. In vitro liver toxicity testing of chemicals:A pragmatic approach[J]. International Journal of Molecular Sciences, 2021, 22(9):5038
    Sabljic A. Chemical topology and ecotoxicology[J]. The Science of the Total Environment, 1991, 109-110:197-220
    Treyer A, Müsch A. Hepatocyte polarity[J]. Comprehensive Physiology, 2013, 3(1):243-287
    Lauschke V M, Hendriks D F, Bell C C, et al. Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates[J]. Chemical Research in Toxicology, 2016, 29(12):1936-1955
    Pampaloni F, Reynaud E G, Stelzer E H K. The third dimension bridges the gap between cell culture and live tissue[J]. Nature Reviews Molecular Cell Biology, 2007, 8(10):839-845
    Ide I, Nagao, Kajiyama S, et al. A novel evaluation method for determining drug-induced hepatotoxicity using 3D bio-printed human liver tissue[J]. Toxicology Mechanisms and Methods, 2020, 30(3):189-196
    Lee D W, Oh W Y, Yi S H, et al. Estimation of bisphenol A:Human toxicity by 3D cell culture arrays, high throughput alternatives to animal tests[J]. Toxicology Letters, 2016, 259:87-94
    Leist M, Ghallab A, Graepel R, et al. Adverse outcome pathways:Opportunities, limitations and open questions[J]. Archives of Toxicology, 2017, 91(11):3477-3505
    Horvat T, Landesmann B, Lostia A, et al. Adverse outcome pathway development from protein alkylation to liver fibrosis[J]. Archives of Toxicology, 2017, 91(4):1523-1543
    de Bruyn T, Chatterjee S, Fattah S, et al. Sandwich-cultured hepatocytes:Utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity[J]. Expert Opinion on Drug Metabolism&Toxicology, 2013, 9(5):589-616
    Ramaiahgari S C, den Braver M W, Herpers B, et al. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies[J]. Archives of Toxicology, 2014, 88(5):1083-1095
    Palakkan A A, Raj D K, Rojan J, et al. Evaluation of polypropylene hollow-fiber prototype bioreactor for bioartificial liver[J]. Tissue Engineering Part A, 2013, 19(9-10):1056-1066
    Choe A, Ha S K, Choi I, et al. Microfluidic gut-liver chip for reproducing the first pass metabolism[J]. Biomedical Microdevices, 2017, 19(1):4
    Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening:Drug screening, disease modeling, and precision medicine applications[J]. Applied Physics Reviews, 2019, 6(1):011302
    Deharde D, Schneider C, Hiller T, et al. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition[J]. Archives of Toxicology, 2016, 90(10):2497-2511
    Chatterjee S, Richert L, Augustijns P, et al. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis[J]. Toxicology and Applied Pharmacology, 2014, 274(1):124-136
    Xu J J, Henstock P V, Dunn M C, et al. Cellular imaging predictions of clinical drug-induced liver injury[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2008, 105(1):97-105
    Zeigerer A, Wuttke A, Marsico G, et al. Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance[J]. Experimental Cell Research, 2017, 350(1):242-252
    Yokoyama Y, Sasaki Y, Terasaki N, et al. Comparison of drug metabolism and its related hepatotoxic effects in HepaRG, cryopreserved human hepatocytes, and HepG2 cell cultures[J]. Biological&Pharmaceutical Bulletin, 2018, 41(5):722-732
    Sison-Young R L, Mitsa D, Jenkins R E, et al. Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2015, 147(2):412-424
    Ramaiahgari S C, Ferguson S S. Organotypic 3D HepaRG liver model for assessment of drug-induced cholestasis[J]. Methods in Molecular Biology, 2019, 1981:313-323
    Basharat A, Rollison H E, Williams D P, et al. HepG2(C3A) spheroids show higher sensitivity compared to HepaRG spheroids for drug-induced liver injury (DILI)[J]. Toxicology and Applied Pharmacology, 2020, 408:115279
    Gupta R, Schrooders Y, Hauser D, et al. Comparing in vitro human liver models to in vivo human liver using RNA-Seq[J]. Archives of Toxicology, 2021, 95(2):573-589
    van Grunsven L A. 3D in vitro models of liver fibrosis[J]. Advanced Drug Delivery Reviews, 2017, 121:133-146
    Prestigiacomo V, Weston A, Messner S, et al. Pro-fibrotic compounds induce stellate cell activation, ECM-remodelling and Nrf2 activation in a human 3D-multicellular model of liver fibrosis[J]. PLoS One, 2017, 12(6):e0179995
    Dash A, Simmers M B, Deering T G, et al. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro [J]. American Journal of Physiology Cell Physiology, 2013, 304(11):C1053-C1063
    Zeilinger K, Schreiter T, Darnell M, et al. Scaling down of a clinical three-dimensional perfusion multicompartment hollow fiber liver bioreactor developed for extracorporeal liver support to an analytical scale device useful for hepatic pharmacological in vitro studies[J]. Tissue Engineering Part C, Methods, 2011, 17(5):549-556
    Darnell M, Ulvestad M, Ellis E, et al. In vitro evaluation of major in vivo drug metabolic pathways using primary human hepatocytes and HepaRG cells in suspension and a dynamic three-dimensional bioreactor system[J]. The Journal of Pharmacology and Experimental Therapeutics, 2012, 343(1):134-144
    Prill S, Bavli D, Levy G, et al. Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone[J]. Archives of Toxicology, 2016, 90(5):1181-1191
    Mastrangeli M, Millet S, Orchid Partners T, et al. Organ-on-chip in development:Towards a roadmap for organs-on-chip[J]. ALTEX, 2019, 36(4):650-668
    孙威,陈雨晴,罗国安,等.器官芯片及其应用[J].分析化学, 2016, 44(4):533-541

    Sun W, Chen Y Q, Luo G A, et al. Organs-on-chips and its applications[J]. Chinese Journal of Analytical Chemistry, 2016, 44(4):533-541(in Chinese)

    Ehrlich A, Duche D, Ouedraogo G, et al. Challenges and opportunities in the design of liver-on-chip microdevices[J]. Annual Review of Biomedical Engineering, 2019, 21:219-239
    Nguyen D G, Funk J, Robbins J B, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro [J]. PLoS One, 2016, 11(7):e0158674
    Rennert K, Steinborn S, Gr ger M, et al. A microfluidically perfused three dimensional human liver model[J]. Biomaterials, 2015, 71:119-131
    Cavero I, Guillon J M, Holzgrefe H H. Human organotypic bioconstructs from organ-on-chip devices for human-predictive biological insights on drug candidates[J]. Expert Opinion on Drug Safety, 2019, 18(8):651-677
    Murphy S V, Atala A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8):773-785
    Odde D J, Renn M J. Laser-guided direct writing for applications in biotechnology[J]. Trends in Biotechnology, 1999, 17(10):385-389
    Xu T, Jin J, Gregory C, et al. Inkjet printing of viable mammalian cells[J]. Biomaterials, 2005, 26(1):93-99
    Ozbolat I T, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting[J]. Biomaterials, 2016, 76:321-343
    Gao B, Yang Q Z, Zhao X, et al. 4D bioprinting for biomedical applications[J]. Trends in Biotechnology, 2016, 34(9):746-756
    Jiang J, Pieterman C D, Ertaylan G, et al. The application of omics-based human liver platforms for investigating the mechanism of drug-induced hepatotoxicity in vitro [J]. Archives of Toxicology, 2019, 93(11):3067-3098
    Li L, Gokduman K, Gokaltun A, et al. A microfluidic 3D hepatocyte chip for hepatotoxicity testing of nanoparticles[J]. Nanomedicine, 2019, 14(16):2209-2226
    Jiang T Y, Guo H X, Xia Y N, et al. Hepatotoxicity of copper sulfide nanoparticles towards hepatocyte spheroids using a novel multi-concave agarose chip method[J]. Nanomedicine, 2021, 16(17):1487-1504
    Elje E, Mariussen E, Moriones O H, et al. Hepato (geno) toxicity assessment of nanoparticles in a HepG2 liver spheroid model[J]. Nanomaterials, 2020, 10(3):E545
    Yan L, Messner C J, Zhang X W, et al. Assessment of fibrotic pathways induced by environmental chemicals using 3D-human liver microtissue model[J]. Environmental Research, 2021, 194:110679
    Sharin T, Crump D, O'Brien J M. Evaluation of the aryl hydrocarbon receptor response in LMH 3D spheroids[J]. Environmental Toxicology and Chemistry, 2020, 39(9):1693-1701
    Goud E S K, Pandey M, Singh C, et al. Effect of dioxins in milk on the 3D cultured primary buffalo hepatocyte model system[J]. Journal of Agricultural and Food Chemistry, 2019, 67(28):8007-8019
    Sun S J, Guo H, Wang J S, et al. Hepatotoxicity of perfluorooctanoic acid and two emerging alternatives based on a 3D spheroid model[J]. Environmental Pollution, 2019, 246:955-962
    Kim B Y, Kim M, Jeong J S, et al. Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo [J]. Environmental Research, 2019, 173:124-134
    Jellali R, Jacques S, Essaouiba A, et al. Investigation of steatosis profiles induced by pesticides using liver organ-on-chip model and omics analysis[J]. Food and Chemical Toxicology, 2021, 152:112155
    Sharin T, Gyasi H, Jones S P, et al. Concentration-and time-dependent induction of Cyp1a and DNA damage response by benzo (a) pyrene in LMH three-dimensional spheroids[J]. Environmental and Molecular Mutagenesis, 2021, 62(5):319-327
    Mandon M, Huet S, Dubreil E, et al. Three-dimensional HepaRG spheroids as a liver model to study human genotoxicity in vitro with the single cell gel electrophoresis assay[J]. Scientific Reports, 2019, 9(1):10548
    Lee J, Choi B, da Yoon No, et al. A 3D alcoholic liver disease model on a chip[J]. Integrative Biology, 2016, 8(3):302-308
    Elder A, Vidyasagar S, DeLouise L. Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers[J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2009, 1(4):434-450
    Meesters J A J, Quik J T K, Koelmans A A, et al. Multimedia environmental fate and speciation of engineered nanoparticles:A probabilistic modeling approach[J]. Environmental Science:Nano, 2016, 3(4):715-727
    Kaundal B, Dalai S, Choudhury S R. Nanomaterial Toxicity in Microbes, Plants and Animals[M]//Sustainable Agriculture Reviews. Cham:Springer International Publishing, 2017:243-266
    Lee J, Lilly G D, Doty R C, et al. In vitro toxicity testing of nanoparticles in 3D cell culture[J]. Small, 2009, 5(10):1213-1221
    Vezina C M, Walker N J, Olson J R. Subchronic exposure to TCDD, PeCDF, PCB126, and PCB153:Effect on hepatic gene expression[J]. Environmental Health Perspectives, 2004, 112(16):1636-1644
    Kovalova N, Nault R, Crawford R, et al. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells[J]. Toxicology and Applied Pharmacology, 2017, 316:95-106
    Li C Y, Liu Y Y, Dong Z, et al. TCDD promotes liver fibrosis through disordering systemic and hepatic iron homeostasis[J]. Journal of Hazardous Materials, 2020, 395:122588
    Yue S Q, Yu J, Kong Y, et al. Metabolomic modulations of HepG2 cells exposed to bisphenol analogues[J]. Environment International, 2019, 129:59-67
    Gijbels E, Vilas-Boas V, Annaert P, et al. Robustness testing and optimization of an adverse outcome pathway on cholestatic liver injury[J]. Archives of Toxicology, 2020, 94(4):1151-1172
    Dragovic S, Vermeulen N P, Gerets H H, et al. Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man[J]. Archives of Toxicology, 2016, 90(12):2979-3003
    Tollefsen K E, Scholz S, Cronin M T, et al. Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA)[J]. Regulatory Toxicology and Pharmacology, 2014, 70(3):629-640
  • 加载中
计量
  • 文章访问数:  3673
  • HTML全文浏览数:  3673
  • PDF下载数:  164
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-09-30
闫路, 苟潇, 彭颖, 高瑞泽, 田明明, 张效伟. 基于3D体外培养模型的化学物质肝毒性预测研究进展[J]. 生态毒理学报, 2022, 17(1): 299-312. doi: 10.7524/AJE.1673-5897.20210930002
引用本文: 闫路, 苟潇, 彭颖, 高瑞泽, 田明明, 张效伟. 基于3D体外培养模型的化学物质肝毒性预测研究进展[J]. 生态毒理学报, 2022, 17(1): 299-312. doi: 10.7524/AJE.1673-5897.20210930002
Yan Lu, Gou Xiao, Peng Ying, Gao Ruize, Tian Mingming, Zhang Xiaowei. Advances in Predicting Hepatotoxicity of Chemicals based on 3D in vitro Culture Models[J]. Asian journal of ecotoxicology, 2022, 17(1): 299-312. doi: 10.7524/AJE.1673-5897.20210930002
Citation: Yan Lu, Gou Xiao, Peng Ying, Gao Ruize, Tian Mingming, Zhang Xiaowei. Advances in Predicting Hepatotoxicity of Chemicals based on 3D in vitro Culture Models[J]. Asian journal of ecotoxicology, 2022, 17(1): 299-312. doi: 10.7524/AJE.1673-5897.20210930002

基于3D体外培养模型的化学物质肝毒性预测研究进展

    通讯作者: 张效伟, E-mail: zhangxw@nju.edu.cn
    作者简介: 闫路(1991-),女,博士研究生,研究方向为环境毒理学,E-mail:yanlu0507@126.com
  • 1. 污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京 210023;
  • 2. 流域环境生态工程研发中心, 北京师范大学自然科学高等研究院, 珠海 519087;
  • 3. 江苏省生态环境保护化学品安全与健康风险研究重点实验室, 南京 210023
基金项目:

江苏省环保科研课题(2018001)

摘要: 精准预测化学物质肝毒性对保护人类生命健康安全具有重要意义。为了避免动物实验固有的物种间差异性和局限性,开发和利用与人源肝脏生理功能直接相关的体外模型至关重要。三维(3D)体外细胞培养模型相比于二维(2D)模型能更好地保留肝细胞代谢功能,再现肝脏内多种细胞相互作用的复杂环境,是体外模拟肝脏生理功能的一大进步,并初步在药物毒性评估方面获得应用的同时,也被引入到环境毒理学领域用于预测环境化学物质的肝毒性。本文介绍了目前常用3D体外细胞培养模型的制备方法,综述了其在环境化学物质(纳米材料、持久性有机污染物和新型有机污染物等)肝毒性预测方面的应用现状,最后探讨了3D肝细胞体外培养模型在有害结局路径指导下开展肝毒性预测的研究与应用前景。

English Abstract

参考文献 (66)

返回顶部

目录

/

返回文章
返回