Duan Y, Guan N, Li P P, et al. Monitoring and dietary exposure assessment of pesticide residues in cowpea (Vigna unguiculata L. Walp) in Hainan, China[J]. Food Control, 2016, 59:250-255
|
Yu Y, Hu S K, Yang Y X, et al. Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013[J]. BMC Public Health, 2017, 18(1):91
|
Fan R Q, Zhang W J, Li L Z, et al. Individual and synergistic toxic effects of carbendazim and chlorpyrifos on zebrafish embryonic development[J]. Chemosphere, 2021, 280:130769
|
Garcia M S, Cavalcante D N C, Araújo Santiago M D S, et al. Reproductive toxicity in male juvenile rats:Antagonistic effects between isolated agrochemicals and in binary or ternary combinations[J]. Ecotoxicology and Environmental Safety, 2021, 209:111766
|
Qin G F, Chen Y, He F R, et al. Risk assessment of fungicide pesticide residues in vegetables and fruits in the mid-western region of China[J]. Journal of Food Composition and Analysis, 2021, 95:103663
|
Zhang Y D, Si W S, Chen L, et al. Determination and dietary risk assessment of 284 pesticide residues in local fruit cultivars in Shanghai, China[J]. Scientific Reports, 2021, 11(1):9681
|
Ezeoyili I C, Mgbenka B O, Atama C I, et al. Changes in brain acetylcholinesterase and oxidative stress biomarkers in African catfish exposed to carbendazim[J]. Journal of Aquatic Animal Health, 2019, 31(4):371-379
|
Liu J, Zhang P F, Zhao Y, et al. Low dose carbendazim disrupts mouse spermatogenesis might be through estrogen receptor related histone and DNA methylation[J]. Ecotoxicology and Environmental Safety, 2019, 176:242-249
|
Sanches A L M, Vieira B H, Reghini M V, et al. Single and mixture toxicity of abamectin and difenoconazole to adult zebrafish (Danio rerio)[J]. Chemosphere, 2017, 188:582-587
|
Jiang J H, Chen L Z, Wu S G, et al. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio)[J]. Environmental Pollution, 2020, 265(Pt A):114844
|
Zhu J S, Liu C L, Wang J Y, et al. Difenoconazole induces cardiovascular toxicity through oxidative stress-mediated apoptosis in early life stages of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2021, 216:112227
|
朱俭勋, 钟石, 王新全, 等. 桑园常用杀菌剂多菌灵诱导鼠源神经细胞PC12凋亡的研究[J]. 蚕业科学, 2016, 42(4):668-673
Zhu J X, Zhong S, Wang X Q, et al. A study on mouse neural cell PC12 apoptosis induced with carbendazim commonly used in mulberry field[J]. Science of Sericulture, 2016, 42(4):668-673(in Chinese)
|
Yoon C S, Jin J H, Park J H, et al. Toxic effects of carbendazim and n-butyl isocyanate, metabolites of the fungicide benomyl, on early development in the African clawed frog, Xenopus laevis[J]. Environmental Toxicology, 2008, 23(1):131-144
|
Hinfray N, Porcher J M, Brion F. Inhibition of rainbow trout (Oncorhynchus mykiss) P450 aromatase activities in brain and ovarian microsomes by various environmental substances[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2006, 144(3):252-262
|
Teng M M, Qi S Z, Zhu W T, et al. Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebrafish (Danio rerio)[J]. Environmental Pollution, 2018, 233:208-217
|
Teng M M, Qi S Z, Zhu W T, et al. Sex-specific effects of difenoconazole on the growth hormone endocrine axis in adult zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2017, 144:402-408
|
肖岚, 蔡文琴. 芳香化酶与脑的发育和再生的相关性[J]. 解剖科学进展, 2002, 8(1):48-51
Xiao L, Cai W Q. Correlation between aromatase and brain development and regeneration[J]. Progress of Anatomical Sciences, 2002, 8(1):48-51(in Chinese)
|
沈凌, 李占魁. 脑芳香化酶的表达特点及其生物学意义[J]. 实用儿科临床杂志, 2006, 21(22):1586-1588
Shen L, Li Z K. Expression characteristics and biological significance of brain aromatase[J]. Journal of Applied Clinical Pediatrics, 2006, 21(22):1586-1588(in Chinese)
|
Jimenez K, Solano K, Scholz C, et al. Early toxic effects in a central American native fish (Parachromis dovii) exposed to chlorpyrifos and difenoconazole[J]. Environmental Toxicology and Chemistry, 2021, 40(7):1940-1949
|
Bao Z W, Zhao Y, Wu A Y, et al. Sub-chronic carbendazim exposure induces hepatic glycolipid metabolism disorder accompanied by gut microbiota dysbiosis in adult zebrafish (Daino rerio)[J]. The Science of the Total Environment, 2020, 739:140081
|
Jin Y X, Zeng Z Y, Wu Y, et al. Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis[J]. Toxicological Sciences, 2015, 147(1):116-126
|
Mu X Y, Wang K, Chai T T, et al. Sex specific response in cholesterol level in zebrafish (Danio rerio) after long-term exposure of difenoconazole[J]. Environmental Pollution, 2015, 197:278-286
|
Jiang J H, Chen L Z, Wu S G, et al. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio)[J]. Environmental Pollution, 2020, 265(Pt A):114844
|
Salihu M, Ajayi B O, Adedara I A, et al. 6-Gingerol-rich fraction from Zingiber officinale ameliorates carbendazim-induced endocrine disruption and toxicity in testes and epididymis of rats[J]. Andrologia, 2017, 49(5):13
|
Li H T, Zhang P F, Zhao Y, et al. Low doses of carbendazim and chlorothalonil synergized to impair mouse spermatogenesis through epigenetic pathways[J]. Ecotoxicology and Environmental Safety, 2020, 188:109908
|
Dong X C, Zhang L M, Chen M, et al. Exposure to difenoconazole inhibits reproductive ability in male marine medaka (Oryzias melastigma)[J]. Journal of Environmental Sciences, 2018, 63:126-132
|
Pereira V R, Pereira D R, de Melo Tavares Vieira K C, et al. Sperm quality of rats exposed to difenoconazole using classical parameters and surface-enhanced Raman scattering:Classification performance by machine learning methods[J]. Environmental Science and Pollution Research International, 2019, 26(34):35253-35265
|
Songür S H, Koçkaya E A, Selmanoĝlu G, et al. Dose-dependent effects of carbendazim on rat thymus[J]. Cell Biochemistry and Function, 2005, 23(6):457-460
|
Jiang J H, Wu S G, Wang Y H, et al. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development[J]. Toxicology in Vitro:An International Journal Published in Association With BIBRA, 2015, 29(7):1473-1481
|
Jiang J H, Wu S G, Wu C X, et al. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio)[J]. Fish & Shellfish Immunology, 2014, 41(2):493-500
|
Farag A, Ebrahim H, ElMazoudy R, et al. Developmental toxicity of fungicide carbendazim in female mice[J]. Birth Defects Research Part B, Developmental and Reproductive Toxicology, 2011, 92(2):122-130
|
Mu X Y, Chai T T, Wang K, et al. The developmental effect of difenoconazole on zebrafish embryos:A mechanism research[J]. Environmental Pollution, 2016, 212:18-26
|
Fu D J, Li P, Song J, et al. Mechanisms of synergistic neurotoxicity induced by two high risk pesticide residues:Chlorpyrifos and carbofuran via oxidative stress[J]. Toxicology in Vitro:An International Journal Published in Association With BIBRA, 2019, 54:338-344
|
Raszewski G, Lemieszek M K, Łukawski K, et al. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y[J]. Basic & Clinical Pharmacology & Toxicology, 2015, 116(2):158-167
|
宋远超. 多菌灵对雄性大鼠生殖毒性机制的研究[D]. 济南:济南大学, 2011:20-23 Song Y C. Study on the mechanism of the carbendazim-induced reproductive toxicity in male rats[D]. Jinan:University of Jinan, 2011:20
-23(in Chinese)
|
包凌玲. 苯醚甲环唑诱导HepG2细胞毒性及其与CYP3A4相互作用机制研究[D]. 杭州:浙江大学, 2015:23-24 Bao L L. Investigation of difenoconazole-induced HepG2 cell apoptosis and the molecular mechanism of its interactions with CYP3
A4[D]. Hangzhou:Zhejiang University, 2015:23-24(in Chinese)
|
Zhao H J, Wang Y, Guo M H, et al. Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp:Involvement of blood-brain barrier, oxidative stress and apoptosis[J]. Science of the Total Environment, 2021, 762:143054
|
Wang X, Ni H F, Xu W P, et al. Difenoconazole induces oxidative DNA damage and mitochondria mediated apoptosis in SH-SY5Y cells[J]. Chemosphere, 2021, 283:131160
|
Naughton S X, Terry A V Jr. Neurotoxicity in acute and repeated organophosphate exposure[J]. Toxicology, 2018, 408:101-112
|
Colle D, Farina M, Ceccatelli S, et al. Paraquat and maneb exposure alters rat neural stem cell proliferation by inducing oxidative stress:New insights on pesticide-induced neurodevelopmental toxicity[J]. Neurotoxicity Research, 2018, 34(4):820-833
|
Singh N, Lawana V, Luo J, et al. Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity:Implications for mitochondria mediated oxidative stress signaling events[J]. Neurobiology of Disease, 2018, 117:82-113
|
Mu X Y, Chai T T, Wang K, et al. Occurrence and origin of sensitivity toward difenoconazole in zebrafish (Danio reio) during different life stages[J]. Aquatic Toxicology, 2015, 160:57-68
|
Zhang S Y, Li T Y, Zhang Y B, et al. A new brominated chalcone derivative suppresses the growth of gastric cancer cells in vitro and in vivo involving ROS mediated up-regulation of DR5 and 4 expression and apoptosis[J]. Toxicology and Applied Pharmacology, 2016, 309:77-86
|