Krewski D, Acosta D Jr, Andersen M, et al. Toxicity testing in the 21st century:A vision and a strategy[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2010, 13(2-4):51-138
Geiser K, Edwards S. Global chemicals outlook:Towards sound management of chemicals[R]. Gigiri Nairobi, Kenya:United Nations Environment Programme, 2013
Judson R, Richard A, Dix D J, et al. The toxicity data landscape for environmental chemicals[J]. Environmental Health Perspectives, 2009, 117(5):685-695
Bradbury S P, Feijtel T C J, van Leeuwen C J. Meeting the scientific needs of ecological risk assessment in a regulatory context[J]. Environmental Science&Technology, 2004, 38(23):463A-470A
Shukla S J, Huang R L, Austin C P, et al. The future of toxicity testing:A focus on in vitro methods using a quantitative high-throughput screening platform[J]. Drug Discovery Today, 2010, 15(23-24):997-1007
Ouedraogo M, Baudoux T, Stévigny C, et al. Review of current and "omics" methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms[J]. Journal of Ethnopharmacology, 2012, 140(3):492-512
Dix D J, Houck K A, Martin M T, et al. The ToxCast program for prioritizing toxicity testing of environmental chemicals[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2007, 95(1):5-12
Richard A M, Judson R S, Houck K A, et al. ToxCast chemical landscape:Paving the road to 21st Century toxicology[J]. Chemical Research in Toxicology, 2016, 29(8):1225-1251
Tice R R, Austin C P, Kavlock R J, et al. Improving the human hazard characterization of chemicals:A Tox21 update[J]. Environmental Health Perspectives, 2013, 121(7):756-765
Judson R S, Houck K A, Kavlock R J, et al. in vitro screening of environmental chemicals for targeted testing prioritization:The ToxCast project[J]. Environmental Health Perspectives, 2010, 118(4):485-492
Ciallella H L, Zhu H. Advancing computational toxicology in the big data era by artificial intelligence:Data-driven and mechanism-driven modeling for chemical toxicity[J]. Chemical Research in Toxicology, 2019, 32(4):536-547
Organization for Economic Co-operation and Development (OECD).(Q) SARs:Evaluation of the commercially available software for human health and environmental endpoints with respect to chemical management applications-Technical report[R]. Brussels:OECD, 2003
Patlewicz G, Ball N, Becker R A, et al. Read-across approaches:Misconceptions, promises and challenges ahead[J]. ALTEX, 2014, 31(4):387-396
Wang N C, Jay Zhao Q, Wesselkamper S C, et al. Application of computational toxicological approaches in human health risk assessment. Ⅰ. A tiered surrogate approach[J]. Regulatory Toxicology and Pharmacology, 2012, 63(1):10-19
Braga R C, Alves V M, Muratov E N, et al. Pred-skin:A fast and reliable web application to assess skin sensitization effect of chemicals[J]. Journal of Chemical Information and Modeling, 2017, 57(5):1013-1017
Russo D P, Strickland J, Karmaus A L, et al. Nonanimal models for acute toxicity evaluations:Applying data-driven profiling and read-across[J]. Environmental Health Perspectives, 2019, 127(4):47001
Zhu H, Bouhifd M, Donley E, et al. Supporting read-across using biological data[J]. ALTEX, 2016, 33(2):167-182
Wittwehr C, Aladjov H, Ankley G, et al. How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology[J]. Toxicological Sciences, 2016, 155(2):326-336
张家敏,彭颖,方文迪,等.有害结局路径(AOP)框架在水体复合污染监测研究中的应用[J].生态毒理学报, 2017, 12(1):1-14 Zhang J M, Peng Y, Fang W D, et al. Application of adverse outcome pathways framework in monitoring of toxic chemicals from aquatic environments[J]. Asian Journal of Ecotoxicology, 2017, 12(1):1-14(in Chinese)
Ankley G T, Bennett R S, Erickson R J, et al. Adverse outcome pathways:A conceptual framework to support ecotoxicology research and risk assessment[J]. Environmental Toxicology and Chemistry, 2010, 29(3):730-741
Villeneuve D L, Crump D, Garcia-Reyero N, et al. Adverse outcome pathway (AOP) development Ⅰ:Strategies and principles[J]. Toxicological Sciences, 2014, 142(2):312-320
International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Medical Dictionary for Regulatory Activities[R]. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, 2017
Hines D E, Edwards S W, Conolly R B, et al. A case study application of the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks to facilitate the integration of human health and ecological end points for cumulative risk assessment (CRA)[J]. Environmental Science&Technology, 2018, 52(2):839-849
Perkins E J, Ashauer R, Burgoon L, et al. Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment[J]. Environmental Toxicology and Chemistry, 2019, 38(9):1850-1865
Jaworska J, Dancik Y, Kern P, et al. Bayesian integrated testing strategy to assess skin sensitization potency:From theory to practice[J]. Journal of Applied Toxicology, 2013, 33(11):1353-1364
Mellor C L, Steinmetz F P, Cronin M T D. Using molecular initiating events to develop a structural alert based screening workflow for nuclear receptor ligands associated with hepatic steatosis[J]. Chemical Research in Toxicology, 2016, 29(2):203-212
Phillips M B, Leonard J A, Grulke C M, et al. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways[J]. Environmental Health Perspectives, 2016, 124(1):53-60
Aguayo-Orozco A, Audouze K, Siggaard T, et al. sAOP:Linking chemical stressors to adverse outcomes pathway networks[J]. Bioinformatics, 2019, 35(24):5391-5392
Escher B I, Henneberger L, K nig M, et al. Cytotoxicity burst differentiating specific from nonspecific effects in Tox21 in vitro reporter gene assays[J]. Environmental Health Perspectives, 2020, 128(7):77007
魏凤华,张俊江,夏普,等.类二噁英物质及芳香烃受体(AhR)介导的有害结局路径(AOP)研究进展[J].生态毒理学报, 2016, 11(1):37-51 Wei F H, Zhang J J, Xia P, et al. Research progress on dioxin-like compounds and AhR-mediated adverse outcome pathway (AOP)[J]. Asian Journal of Ecotoxicology, 2016, 11(1):37-51(in Chinese)
中华人民共和国生态环境部.中国现有化学物质名录[S].北京:中华人民共和国生态环境部, 2013Ministry of Ecology and Environment of the People's Republic of China. Inventory of existing chemical substances in China[S]. Beijing:Ministry of Ecology and Environment of the People's Republic of China, 2013(in Chinese)
Bonefeld-Jorgensen E C, Long M H, Bossi R, et al. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit:A case control study[J]. Environmental Health:A Global Access Science Source, 2011, 10:88
Han R, Zhang F, Wan C, et al. Effect of perfluorooctane sulphonate-induced Kupffer cell activation on hepatocyte proliferation through the NF- κ B/TNF-α /IL-6-dependent pathway[J]. Chemosphere, 2018, 200:283-294
Chen X X, Nie X K, Mao J M, et al. Perfluorooctanesulfonate induces neuroinflammation through the secretion of TNF-α mediated by the JAK2/STAT3 pathway[J]. Neurotoxicology, 2018, 66:32-42
Chen J F, Das S R, la du J, et al. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring[J]. Environmental Toxicology and Chemistry, 2013, 32(1):201-206
Luebker D J, York R G, Hansen K J, et al. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats:Dose-response, and biochemical and pharamacokinetic parameters[J]. Toxicology, 2005, 215(1-2):149-169
Soloff A C, Wolf B J, White N D, et al. Environmental perfluorooctane sulfonate exposure drives T cell activation in bottlenose dolphins[J]. Journal of Applied Toxicology, 2017, 37(9):1108-1116
Tang L L, Wang J D, Xu T T, et al. Mitochondrial toxicity of perfluorooctane sulfonate in mouse embryonic stem cell-derived cardiomyocytes[J]. Toxicology, 2017, 382:108-116
Mansouri K, Kleinstreuer N, Abdelaziz A M, et al. CoMPARA:Collaborative modeling project for androgen receptor activity[J]. Environmental Health Perspectives, 2020, 128(2):27002
Russo D P, Strickland J, Karmaus A L, et al. Nonanimal models for acute toxicity evaluations:Applying data-driven profiling and read-across[J]. Environmental Health Perspectives, 2019, 127(4):47001
Angrish M M, Dominici C Y, Zacharewski T R. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice[J]. Toxicological Sciences, 2012, 131(1):108-115
Angrish M M, Jones A D, Harkema J R, et al. Aryl hydrocarbon receptor-mediated induction of Stearoyl-CoA desaturase 1 alters hepatic fatty acid composition in TCDD-elicited steatosis[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2011, 124(2):299-310
Angrish M M, Mets B D, Jones A D, et al. Dietary fat is a lipid source in 2,3,7,8-tetrachlorodibenzo- ρ -dioxin (TCDD)-elicited hepatic steatosis in C57BL/6 mice[J]. Toxicological Sciences, 2012, 128(2):377-386
Ullah S, Zuberi A, Alagawany M, et al. Cypermethrin induced toxicities in fish and adverse health outcomes:Its prevention and control measure adaptation[J]. Journal of Environmental Management, 2018, 206:863-871
European Food Safety Authority. Peer review of the pesticide risk assessment of the active substance cypermethrin[S]. Parma:European Food Safety Authority, 2018
中华人民共和国生态环境部.化学物质环境风险评估技术方法框架性指南(试行)[S].北京:中华人民共和国生态环境部, 2019Ministry of Ecology and Environment of the People's Republic of China. The framework guide for technology methods for environmental risk assessment of chemical substances (trial)[S]. Beijing:Ministry of Ecology and Environment of the People's Republic of China, 2019(in Chinese)
Zhang X W, Xia P, Wang P P, et al. Omics advances in ecotoxicology[J]. Environmental Science&Technology, 2018, 52(7):3842-3851
Dai J Y. Reduced transcriptomic approach for screening and prediction of chemical toxicity[J]. Chemical Research in Toxicology, 2018, 31(7):532-533
Thomas R S, Philbert M A, Auerbach S S, et al. Incorporating new technologies into toxicity testing and risk assessment:Moving from 21st Century vision to a data-driven framework[J]. Toxicological Sciences, 2013, 136(1):4-18