Krewski D, Acosta D Jr, Andersen M, et al. Toxicity testing in the 21st century:A vision and a strategy[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2010, 13(2-4):51-138
|
Geiser K, Edwards S. Global chemicals outlook:Towards sound management of chemicals[R]. Gigiri Nairobi, Kenya:United Nations Environment Programme, 2013
|
Judson R, Richard A, Dix D J, et al. The toxicity data landscape for environmental chemicals[J]. Environmental Health Perspectives, 2009, 117(5):685-695
|
Bradbury S P, Feijtel T C J, van Leeuwen C J. Meeting the scientific needs of ecological risk assessment in a regulatory context[J]. Environmental Science&Technology, 2004, 38(23):463A-470A
|
Shukla S J, Huang R L, Austin C P, et al. The future of toxicity testing:A focus on in vitro methods using a quantitative high-throughput screening platform[J]. Drug Discovery Today, 2010, 15(23-24):997-1007
|
Ouedraogo M, Baudoux T, Stévigny C, et al. Review of current and "omics" methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms[J]. Journal of Ethnopharmacology, 2012, 140(3):492-512
|
Dix D J, Houck K A, Martin M T, et al. The ToxCast program for prioritizing toxicity testing of environmental chemicals[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2007, 95(1):5-12
|
Richard A M, Judson R S, Houck K A, et al. ToxCast chemical landscape:Paving the road to 21st Century toxicology[J]. Chemical Research in Toxicology, 2016, 29(8):1225-1251
|
Tice R R, Austin C P, Kavlock R J, et al. Improving the human hazard characterization of chemicals:A Tox21 update[J]. Environmental Health Perspectives, 2013, 121(7):756-765
|
Judson R S, Houck K A, Kavlock R J, et al. in vitro screening of environmental chemicals for targeted testing prioritization:The ToxCast project[J]. Environmental Health Perspectives, 2010, 118(4):485-492
|
Ciallella H L, Zhu H. Advancing computational toxicology in the big data era by artificial intelligence:Data-driven and mechanism-driven modeling for chemical toxicity[J]. Chemical Research in Toxicology, 2019, 32(4):536-547
|
Organization for Economic Co-operation and Development (OECD).(Q) SARs:Evaluation of the commercially available software for human health and environmental endpoints with respect to chemical management applications-Technical report[R]. Brussels:OECD, 2003
|
Patlewicz G, Ball N, Becker R A, et al. Read-across approaches:Misconceptions, promises and challenges ahead[J]. ALTEX, 2014, 31(4):387-396
|
Wang N C, Jay Zhao Q, Wesselkamper S C, et al. Application of computational toxicological approaches in human health risk assessment. Ⅰ. A tiered surrogate approach[J]. Regulatory Toxicology and Pharmacology, 2012, 63(1):10-19
|
Braga R C, Alves V M, Muratov E N, et al. Pred-skin:A fast and reliable web application to assess skin sensitization effect of chemicals[J]. Journal of Chemical Information and Modeling, 2017, 57(5):1013-1017
|
Russo D P, Strickland J, Karmaus A L, et al. Nonanimal models for acute toxicity evaluations:Applying data-driven profiling and read-across[J]. Environmental Health Perspectives, 2019, 127(4):47001
|
Zhu H, Bouhifd M, Donley E, et al. Supporting read-across using biological data[J]. ALTEX, 2016, 33(2):167-182
|
Wittwehr C, Aladjov H, Ankley G, et al. How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology[J]. Toxicological Sciences, 2016, 155(2):326-336
|
张家敏,彭颖,方文迪,等.有害结局路径(AOP)框架在水体复合污染监测研究中的应用[J].生态毒理学报, 2017, 12(1):1-14
Zhang J M, Peng Y, Fang W D, et al. Application of adverse outcome pathways framework in monitoring of toxic chemicals from aquatic environments[J]. Asian Journal of Ecotoxicology, 2017, 12(1):1-14(in Chinese)
|
Ankley G T, Bennett R S, Erickson R J, et al. Adverse outcome pathways:A conceptual framework to support ecotoxicology research and risk assessment[J]. Environmental Toxicology and Chemistry, 2010, 29(3):730-741
|
Villeneuve D L, Crump D, Garcia-Reyero N, et al. Adverse outcome pathway (AOP) development Ⅰ:Strategies and principles[J]. Toxicological Sciences, 2014, 142(2):312-320
|
International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Medical Dictionary for Regulatory Activities[R]. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, 2017
|
Hines D E, Edwards S W, Conolly R B, et al. A case study application of the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks to facilitate the integration of human health and ecological end points for cumulative risk assessment (CRA)[J]. Environmental Science&Technology, 2018, 52(2):839-849
|
Perkins E J, Ashauer R, Burgoon L, et al. Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment[J]. Environmental Toxicology and Chemistry, 2019, 38(9):1850-1865
|
Jaworska J, Dancik Y, Kern P, et al. Bayesian integrated testing strategy to assess skin sensitization potency:From theory to practice[J]. Journal of Applied Toxicology, 2013, 33(11):1353-1364
|
Mellor C L, Steinmetz F P, Cronin M T D. Using molecular initiating events to develop a structural alert based screening workflow for nuclear receptor ligands associated with hepatic steatosis[J]. Chemical Research in Toxicology, 2016, 29(2):203-212
|
Phillips M B, Leonard J A, Grulke C M, et al. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways[J]. Environmental Health Perspectives, 2016, 124(1):53-60
|
Aguayo-Orozco A, Audouze K, Siggaard T, et al. sAOP:Linking chemical stressors to adverse outcomes pathway networks[J]. Bioinformatics, 2019, 35(24):5391-5392
|
Escher B I, Henneberger L, K nig M, et al. Cytotoxicity burst differentiating specific from nonspecific effects in Tox21 in vitro reporter gene assays[J]. Environmental Health Perspectives, 2020, 128(7):77007
|
魏凤华,张俊江,夏普,等.类二噁英物质及芳香烃受体(AhR)介导的有害结局路径(AOP)研究进展[J].生态毒理学报, 2016, 11(1):37-51
Wei F H, Zhang J J, Xia P, et al. Research progress on dioxin-like compounds and AhR-mediated adverse outcome pathway (AOP)[J]. Asian Journal of Ecotoxicology, 2016, 11(1):37-51(in Chinese)
|
中华人民共和国生态环境部.中国现有化学物质名录[S].北京:中华人民共和国生态环境部, 2013Ministry of Ecology and Environment of the People's Republic of China. Inventory of existing chemical substances in China[S]. Beijing:Ministry of Ecology and Environment of the People's Republic of China, 2013(in Chinese)
|
Bonefeld-Jorgensen E C, Long M H, Bossi R, et al. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit:A case control study[J]. Environmental Health:A Global Access Science Source, 2011, 10:88
|
Han R, Zhang F, Wan C, et al. Effect of perfluorooctane sulphonate-induced Kupffer cell activation on hepatocyte proliferation through the NF- κ B/TNF-α /IL-6-dependent pathway[J]. Chemosphere, 2018, 200:283-294
|
Chen X X, Nie X K, Mao J M, et al. Perfluorooctanesulfonate induces neuroinflammation through the secretion of TNF-α mediated by the JAK2/STAT3 pathway[J]. Neurotoxicology, 2018, 66:32-42
|
Chen J F, Das S R, la du J, et al. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring[J]. Environmental Toxicology and Chemistry, 2013, 32(1):201-206
|
Luebker D J, York R G, Hansen K J, et al. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats:Dose-response, and biochemical and pharamacokinetic parameters[J]. Toxicology, 2005, 215(1-2):149-169
|
Soloff A C, Wolf B J, White N D, et al. Environmental perfluorooctane sulfonate exposure drives T cell activation in bottlenose dolphins[J]. Journal of Applied Toxicology, 2017, 37(9):1108-1116
|
Tang L L, Wang J D, Xu T T, et al. Mitochondrial toxicity of perfluorooctane sulfonate in mouse embryonic stem cell-derived cardiomyocytes[J]. Toxicology, 2017, 382:108-116
|
Mansouri K, Kleinstreuer N, Abdelaziz A M, et al. CoMPARA:Collaborative modeling project for androgen receptor activity[J]. Environmental Health Perspectives, 2020, 128(2):27002
|
Russo D P, Strickland J, Karmaus A L, et al. Nonanimal models for acute toxicity evaluations:Applying data-driven profiling and read-across[J]. Environmental Health Perspectives, 2019, 127(4):47001
|
Angrish M M, Dominici C Y, Zacharewski T R. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice[J]. Toxicological Sciences, 2012, 131(1):108-115
|
Angrish M M, Jones A D, Harkema J R, et al. Aryl hydrocarbon receptor-mediated induction of Stearoyl-CoA desaturase 1 alters hepatic fatty acid composition in TCDD-elicited steatosis[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2011, 124(2):299-310
|
Angrish M M, Mets B D, Jones A D, et al. Dietary fat is a lipid source in 2,3,7,8-tetrachlorodibenzo- ρ -dioxin (TCDD)-elicited hepatic steatosis in C57BL/6 mice[J]. Toxicological Sciences, 2012, 128(2):377-386
|
Ullah S, Zuberi A, Alagawany M, et al. Cypermethrin induced toxicities in fish and adverse health outcomes:Its prevention and control measure adaptation[J]. Journal of Environmental Management, 2018, 206:863-871
|
European Food Safety Authority. Peer review of the pesticide risk assessment of the active substance cypermethrin[S]. Parma:European Food Safety Authority, 2018
|
中华人民共和国生态环境部.化学物质环境风险评估技术方法框架性指南(试行)[S].北京:中华人民共和国生态环境部, 2019Ministry of Ecology and Environment of the People's Republic of China. The framework guide for technology methods for environmental risk assessment of chemical substances (trial)[S]. Beijing:Ministry of Ecology and Environment of the People's Republic of China, 2019(in Chinese)
|
Zhang X W, Xia P, Wang P P, et al. Omics advances in ecotoxicology[J]. Environmental Science&Technology, 2018, 52(7):3842-3851
|
Dai J Y. Reduced transcriptomic approach for screening and prediction of chemical toxicity[J]. Chemical Research in Toxicology, 2018, 31(7):532-533
|
Thomas R S, Philbert M A, Auerbach S S, et al. Incorporating new technologies into toxicity testing and risk assessment:Moving from 21st Century vision to a data-driven framework[J]. Toxicological Sciences, 2013, 136(1):4-18
|