雌激素的3D-QSAR模型构建及其预测饲料与猪肉中雌激素对人体内分泌影响的应用

方菁, 申哲民, 袁涛, 张徐祥. 雌激素的3D-QSAR模型构建及其预测饲料与猪肉中雌激素对人体内分泌影响的应用[J]. 生态毒理学报, 2022, 17(4): 72-79. doi: 10.7524/AJE.1673-5897.20211107001
引用本文: 方菁, 申哲民, 袁涛, 张徐祥. 雌激素的3D-QSAR模型构建及其预测饲料与猪肉中雌激素对人体内分泌影响的应用[J]. 生态毒理学报, 2022, 17(4): 72-79. doi: 10.7524/AJE.1673-5897.20211107001
Fang Jing, Shen Zhemin, Yuan Tao, Zhang Xuxiang. Construction of 3D-QSAR Model of Estrogen and Its Effect on Human Endocrine in Pork and Feed[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 72-79. doi: 10.7524/AJE.1673-5897.20211107001
Citation: Fang Jing, Shen Zhemin, Yuan Tao, Zhang Xuxiang. Construction of 3D-QSAR Model of Estrogen and Its Effect on Human Endocrine in Pork and Feed[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 72-79. doi: 10.7524/AJE.1673-5897.20211107001

雌激素的3D-QSAR模型构建及其预测饲料与猪肉中雌激素对人体内分泌影响的应用

    作者简介: 方菁(1997—),女,硕士,主要研究方向为环境毒理学,E-mail:rollingdog@sjtu.edu.cn
    通讯作者: 方菁, E-mail: rollingdog@sjtu.edu.cn
  • 基金项目:

    上海交通大学“医工交叉基金”项目(YG2017ZD15);国家重大科技专项子课题(2017ZX07202005-005)

  • 中图分类号: X171.5

Construction of 3D-QSAR Model of Estrogen and Its Effect on Human Endocrine in Pork and Feed

    Corresponding author: Fang Jing, rollingdog@sjtu.edu.cn
  • Fund Project:
  • 摘要: 雌激素作为环境内分泌干扰物对人体有内分泌干扰效应,影响人体健康。以雌激素受体相对亲和力(relative binding affinity,RBA)的对数表征生物活性,对雌激素进行了三维定量构效关系(3D-QSAR)计算,得到具有较好预测能力的CoMFA (q2=0.721,r2=0.925)和CoMSIA (q2=0.824,r2=0.961)模型。对全国范围内各地区猪饲料和猪肉进行了雌激素含量检测与雌激素效应评估。植物雌激素在猪饲料和猪肉中检出率为75%和92%,天然雌激素在猪饲料和猪肉中检出率均为33%,合成雌激素在猪饲料中未检出,在猪肉中检出率为33%。利用饲料和肉中植物雌激素浓度计算得出,植物雌激素从猪饲料到猪肉中的生物富集系数为0.27~8.2。对全国范围内各地区猪肉进行了雌激素风险评估,结果显示虽然雌激素风险指数显示相对安全,但香芹酚、香豆素和β-谷甾醇等植物雌激素的雌激素效应较高,应引起重视。
  • 加载中
  • Boberg J, Mandrup K R, Jacobsen P R, et al. Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens[J]. Reproductive Toxicology, 2013, 40:41-51
    Heras-González L, Latorre J A, Martinez-Bebia M, et al. The relationship of obesity with lifestyle and dietary exposure to endocrine-disrupting chemicals[J]. Food and Chemical Toxicology, 2020, 136:110983
    Emara Y, Fantke P, Judson R, et al. Integrating endocrine-related health effects into comparative human toxicity characterization[J]. Science of the Total Environment, 2021, 762:143874
    Fleck S C, Churchwell M I, Doerge D R, et al. Urine and serum biomonitoring of exposure to environmental estrogens Ⅱ:Soy isoflavones and zearalenone in pregnant women[J]. Food and Chemical Toxicology, 2016, 95:19-27
    Robles J, Marcos J, Renau N, et al. Quantifying endogenous androgens, estrogens, pregnenolone and progesterone metabolites in human urine by gas chromatography tandem mass spectrometry[J]. Talanta, 2017, 169:20-29
    Huang J, Sun J H, Chen Y H, et al. Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography-tandem mass spectrometry:A case study for breast cancer[J]. Analytica Chimica Acta, 2012, 711:60-68
    Adlercreutz H, Kiuru P, Rasku S, et al. An isotope dilution gas chromatographic-mass spectrometric method for the simultaneous assay of estrogens and phytoestrogens in urine[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2004, 92(5):399-411
    Foster W G, Kubwabo C, Kosarac I, et al. Free bisphenol A (BPA), BPA-glucuronide (BPA-G), and total BPA concentrations in maternal serum and urine during pregnancy and umbilical cord blood at delivery[J]. Emerging Contaminants, 2019, 5:279-287
    Lacroix M Z, Puel S, Collet S H, et al. Simultaneous quantification of bisphenol A and its glucuronide metabolite (BPA-G) in plasma and urine:Applicability to toxicokinetic investigations[J]. Talanta, 2011, 85(4):2053-2059
    Mustafa A M, Malintan N T, Seelan S, et al. Phytoestrogens levels determination in the cord blood from Malaysia rural and urban populations[J]. Toxicology and Applied Pharmacology, 2007, 222(1):25-32
    Prasain J K, Arabshahi A, Moore D R Ⅱ, et al. Simultaneous determination of 11 phytoestrogens in human serum using a 2 min liquid chromatography/tandem mass spectrometry method[J]. Journal of Chromatography B, 2010, 878(13-14):994-1002
    Wyns C, Bolca S, de Keukeleire D, et al. Development of a high-throughput LC/APCI-MS method for the determination of thirteen phytoestrogens including gut microbial metabolites in human urine and serum[J]. Journal of Chromatography B, 2010, 878(13-14):949-956
    黄斌, 潘学军, 万幸, 等. 固相萃取-衍生化-气相色谱/质谱测定水中类固醇类环境内分泌干扰物[J]. 分析化学, 2011, 39(4):449-454

    Huang B, Pan X J, Wan X, et al. Simultaneous determination of steroid endocrine disrupting chemicals in water by solid phase extraction-derivatization gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(4):449-454(in Chinese)

    Lee S H, Jung B H, Kim S Y, et al. Determination of phytoestrogens in traditional medicinal herbs using gas chromatography-mass spectrometry[J]. The Journal of Nutritional Biochemistry, 2004, 15(8):452-460
    Benedetti B, di Carro M, Mirasole C, et al. Fast derivatization procedure for the analysis of phytoestrogens in soy milk by gas chromatography tandem mass spectrometry[J]. Microchemical Journal, 2018, 137:62-70
    Gray S L, Lackey B R. Optimizing a recombinant estrogen receptor binding assay for analysis of herbal extracts[J]. Journal of Herbal Medicine, 2019, 15:100252
    Cotterill J V, Palazzolo L, Ridgway C, et al. Predicting estrogen receptor binding of chemicals using a suite of in silico methods-Complementary approaches of (Q)SAR, molecular docking and molecular dynamics[J]. Toxicology and Applied Pharmacology, 2019, 378:114630
    He J Y, Peng T, Yang X H, et al. Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor[J]. Ecotoxicology and Environmental Safety, 2018, 148:211-219
    胡海山, 赵淑娥, 芦慧, 等. QuEChERS-超高效液相色谱法快速测定果蔬中4种植物激素残留[J]. 食品安全质量检测学报, 2019, 10(10):2995-2999

    Hu H S, Zhao S E, Lu H, et al. Rapid determination of 4 kinds of phytohormone residues in fruits and vegetables by QuEChERS-ultra performance liquid chromatography[J]. Journal of Food Safety & Quality, 2019, 10(10):2995-2999(in Chinese)

    United States Environmental Protection Agency (US EPA). CompTox, U.S. Environmental Protection Agency[DB].[2021-10-5]. https://comptox.epa.gov/dashboard/predictions/index
    National Center for Biotechnology Information. PubChem, National Center for Biotechnology Information[DB].[2021-09-21]. https://pubchem.ncbi.nlm.nih.gov/
    赵娜娜, 应力, 孙方云, 等. 温州市食品环境雌激素污染状况及风险评估[J]. 温州医科大学学报, 2014, 44(3):173-176

    Zhao N N, Ying L, Sun F Y, et al. Contamination levels of environmental estrogens in foods and risk assessment in Wenzhou[J]. Journal of Wenzhou Medical University, 2014, 44(3):173-176(in Chinese)

    Tang Z, Wan Y P, Liu Z H, et al. Twelve natural estrogens in urines of swine and cattle:Concentration profiles and importance of eight less-studied[J]. Science of the Total Environment, 2022, 803:150042
  • 加载中
计量
  • 文章访问数:  1146
  • HTML全文浏览数:  1146
  • PDF下载数:  40
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-07

雌激素的3D-QSAR模型构建及其预测饲料与猪肉中雌激素对人体内分泌影响的应用

    通讯作者: 方菁, E-mail: rollingdog@sjtu.edu.cn
    作者简介: 方菁(1997—),女,硕士,主要研究方向为环境毒理学,E-mail:rollingdog@sjtu.edu.cn
  • 1. 上海交通大学环境科学与工程学院, 国家环境保护新型污染物环境健康影响评价重点实验室, 上海 200240;
  • 2. 南京大学环境学院环境卫生研究中心, 污染控制与资源再利用国家重点实验室, 南京 210023
基金项目:

上海交通大学“医工交叉基金”项目(YG2017ZD15);国家重大科技专项子课题(2017ZX07202005-005)

摘要: 雌激素作为环境内分泌干扰物对人体有内分泌干扰效应,影响人体健康。以雌激素受体相对亲和力(relative binding affinity,RBA)的对数表征生物活性,对雌激素进行了三维定量构效关系(3D-QSAR)计算,得到具有较好预测能力的CoMFA (q2=0.721,r2=0.925)和CoMSIA (q2=0.824,r2=0.961)模型。对全国范围内各地区猪饲料和猪肉进行了雌激素含量检测与雌激素效应评估。植物雌激素在猪饲料和猪肉中检出率为75%和92%,天然雌激素在猪饲料和猪肉中检出率均为33%,合成雌激素在猪饲料中未检出,在猪肉中检出率为33%。利用饲料和肉中植物雌激素浓度计算得出,植物雌激素从猪饲料到猪肉中的生物富集系数为0.27~8.2。对全国范围内各地区猪肉进行了雌激素风险评估,结果显示虽然雌激素风险指数显示相对安全,但香芹酚、香豆素和β-谷甾醇等植物雌激素的雌激素效应较高,应引起重视。

English Abstract

参考文献 (23)

目录

/

返回文章
返回