被动采样技术在水环境暴露监测评估中的应用与挑战

蒋沛瑀, 许宜平, 马梅, 王子健. 被动采样技术在水环境暴露监测评估中的应用与挑战[J]. 生态毒理学报, 2022, 17(4): 59-71. doi: 10.7524/AJE.1673-5897.20220120002
引用本文: 蒋沛瑀, 许宜平, 马梅, 王子健. 被动采样技术在水环境暴露监测评估中的应用与挑战[J]. 生态毒理学报, 2022, 17(4): 59-71. doi: 10.7524/AJE.1673-5897.20220120002
Jiang Peiyu, Xu Yiping, Ma Mei, Wang Zijian. Passive Sampling in Aquatic Exposure Assessment: Applications and Challenges[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 59-71. doi: 10.7524/AJE.1673-5897.20220120002
Citation: Jiang Peiyu, Xu Yiping, Ma Mei, Wang Zijian. Passive Sampling in Aquatic Exposure Assessment: Applications and Challenges[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 59-71. doi: 10.7524/AJE.1673-5897.20220120002

被动采样技术在水环境暴露监测评估中的应用与挑战

    作者简介: 蒋沛瑀(1998—),男,硕士研究生,研究方向为水体被动采样技术,E-mail:jiangpeiyu20@mails.ucas.ac.cn
    通讯作者: 许宜平, E-mail: ypxu@rcees.ac.cn
  • 基金项目:

    国家自然科学基金重点项目(52030003);国家自然科学基金面上项目(41977208)

  • 中图分类号: X171.5

Passive Sampling in Aquatic Exposure Assessment: Applications and Challenges

    Corresponding author: Xu Yiping, ypxu@rcees.ac.cn
  • Fund Project:
  • 摘要: 被动采样技术是顺应监测需求发展起来的新技术,凭借其污染物检出限低、提供时间加权平均浓度、模拟生物采样、节约成本、便于布设和适用范围广等优势,已经在各类水体环境中得到了广泛应用。本文综述了被动采样技术的基本原理、主要采样器类型、主要应用场景,着重讨论了被动采样在浓度波动情形下的应用以及相应的影响因素。被动采样在洪水、排污等污染事件的监测中有着诸多应用优势,但是复杂的浓度波动事件特征和环境基质影响带来一系列应用挑战有待解决,需要合理评估并提高被动采样在污染事件中的性能。此外,被动采样与非靶向分析、废水流行病学等其他方法的联用进一步拓宽其在水环境暴露评估中的应用途径和发展前景。
  • 加载中
  • Kot-Wasik A, Zabiegała B, Urbanowicz M, et al. Advances in passive sampling in environmental studies[J]. Analytica Chimica Acta, 2007, 602(2):141-163
    Huckins J N, Manuweera G K, Petty J D, et al. Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water[J]. Environmental Science & Technology, 1993, 27(12):2489-2496
    Vrana B, Allan I J, Greenwood R, et al. Passive sampling techniques for monitoring pollutants in water[J]. TrAC Trends in Analytical Chemistry, 2005, 24(10):845-868
    Booij K, Vrana B, Huckins J N. Chapter 7 Theory, modelling and calibration of passive samplers used in water monitoring[J]. Comprehensive Analytical Chemistry, 2007, 48:141-169
    Alvarez D A, Petty J D, Huckins J N, et al. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments[J]. Environmental Toxicology and Chemistry, 2004, 23(7):1640-1648
    Booij K. Passive sampler exchange kinetics in large and small water volumes under mixed rate control by sorbent and water boundary layer[J]. Environmental Toxicology and Chemistry, 2021, 40(5):1241-1254
    Belles A, Pardon P, Budzinski H. Development of an adapted version of polar organic chemical integrative samplers (POCIS-Nylon)[J]. Analytical and Bioanalytical Chemistry, 2014, 406(4):1099-1110
    Park G. The mathematics of diffusion:J. Crank Clarendon Press, Oxford, 1975.2nd edn. 414 pp. £12.50[J]. Polymer, 1975, 16(11):855
    Mutzner L, Vermeirssen E L M, Mangold S, et al. Passive samplers to quantify micropollutants in sewer overflows:Accumulation behaviour and field validation for short pollution events[J]. Water Research, 2019, 160:350-360
    Tran H N, You S J, Hosseini-Bandegharaei A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions:A critical review[J]. Water Research, 2017, 120:88-116
    Booij K, Robinson C D, Burgess R M, et al. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment[J]. Environmental Science & Technology, 2016, 50(1):3-17
    Harman C, Allan I J, Vermeirssen E L M. Calibration and use of the polar organic chemical integrative sampler-a critical review[J]. Environmental Toxicology and Chemistry, 2012, 31(12):2724-2738
    Huckins J N, Petty J D, Lebo J A, et al. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices[J]. Environmental Science & Technology, 2002, 36(1):85-91
    Mazzella N, Lissalde S, Moreira S, et al. Evaluation of the use of performance reference compounds in an Oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater[J]. Environmental Science & Technology, 2010, 44(5):1713-1719
    Taylor A C, Fones G R, Vrana B, et al. Applications for passive sampling of hydrophobic organic contaminants in water-a review[J]. Critical Reviews in Analytical Chemistry, 2021, 51(1):20-54
    Jeong Y, Schäffer A, Smith K. A comparison of equilibrium and kinetic passive sampling for the monitoring of aquatic organic contaminants in German Rivers[J]. Water Research, 2018, 145:248-258
    O'Brien D, Lewis S, Davis A, et al. Spatial and temporal variability in pesticide exposure downstream of a heavily irrigated cropping area:Application of different monitoring techniques[J]. Journal of Agricultural and Food Chemistry, 2016, 64(20):3975-3989
    McKay S, Tscharke B, Hawker D, et al. Calibration and validation of a microporous polyethylene passive sampler for quantitative estimation of illicit drug and pharmaceutical and personal care product (PPCP) concentrations in wastewater influent[J]. Science of the Total Environment, 2020, 704:135891
    Kaserzon S L, Hawker D W, Booij K, et al. Passive sampling of perfluorinated chemicals in water:In-situ calibration[J]. Environmental Pollution, 2014, 186:98-103
    Llorca J, Gutiérrez C, Capilla E, et al. Constantly stirred sorbent and continuous flow integrative sampler:New integrative samplers for the time weighted average water monitoring[J]. Journal of Chromatography A, 2009, 1216(31):5783-5792
    Vrana B, Mills G A, Kotterman M, et al. Modelling and field application of the Chemcatcher passive sampler calibration data for the monitoring of hydrophobic organic pollutants in water[J]. Environmental Pollution, 2007, 145(3):895-904
    Katritzky A R, Lobanov V S, Karelson M. QSPR:The correlation and quantitative prediction of chemical and physical properties from structure[J]. Chemical Society Reviews, 1995, 24(4):279-287
    Hu J W, Zhang X Y, Wang Z W. A review on progress in QSPR studies for surfactants[J]. International Journal of Molecular Sciences, 2010, 11(3):1020-1047
    Miller T H, Baz-Lomba J A, Harman C, et al. The first attempt at non-linear in silico prediction of sampling rates for polar organic chemical integrative samplers (POCIS)[J]. Environmental Science & Technology, 2016, 50(15):7973-7981
    Miège C, Mazzella N, Allan I, et al. Position paper on passive sampling techniques for the monitoring of contaminants in the aquatic environment-Achievements to date and perspectives[J]. Trends in Environmental Analytical Chemistry, 2015, 8:20-26
    Poulier G, Lissalde S, Charriau A, et al. Can POCIS be used in Water Framework Directive (2000/60/EC) monitoring networks? A study focusing on pesticides in a French agricultural watershed[J]. The Science of the Total Environment, 2014, 497-498:282-292
    Tang J F, Chen S, Xu Y P, et al. Calibration and field performance of triolein embedded acetate membranes for passive sampling persistent organic pollutants in water[J]. Environmental Pollution, 2012, 164:158-163
    Bishop N, Jones-Lepp T, Margetts M, et al. Wastewater-based epidemiology pilot study to examine drug use in the Western United States[J]. The Science of the Total Environment, 2020, 745:140697
    Poulier G, Lissalde S, Charriau A, et al. Estimates of pesticide concentrations and fluxes in two rivers of an extensive French multi-agricultural watershed:Application of the passive sampling strategy[J]. Environmental Science and Pollution Research, 2015, 22(11):8044-8057
    Monteyne E, Roose P, Janssen C R. Application of a silicone rubber passive sampling technique for monitoring PAHs and PCBs at three Belgian coastal harbours[J]. Chemosphere, 2013, 91(3):390-398
    Gao X Z, Huang P, Huang Q H, et al. Organophosphorus flame retardants and persistent, bioaccumulative, and toxic contaminants in Arctic seawaters:On-board passive sampling coupled with target and non-target analysis[J]. Environmental Pollution, 2019, 253:1-10
    Gao X Z, Xu Y P, Ma M, et al. Distribution, sources and transport of organophosphorus flame retardants in the water and sediment of Ny-Ålesund, Svalbard, the Arctic[J]. Environmental Pollution, 2020, 264:114792
    Allan I J, Booij K, Paschke A, et al. Field performance of seven passive sampling devices for monitoring of hydrophobic substances[J]. Environmental Science & Technology, 2009, 43(14):5383-5390
    Friedman C L, Burgess R M, Perron M M, et al. Comparing polychaete and polyethylene uptake to assess sediment resuspension effects on PCB bioavailability[J]. Environmental Science & Technology, 2009, 43(8):2865-2870
    Liscio C, Magi E, Di Carro M, et al. Combining passive samplers and biomonitors to evaluate endocrine disrupting compounds in a wastewater treatment plant by LC/MS/MS and bioassay analyses[J]. Environmental Pollution, 2009, 157(10):2716-2721
    Williams R J, Johnson A C, Smith J J, et al. Steroid estrogens profiles along river stretches arising from sewage treatment works discharges[J]. Environmental Science & Technology, 2003, 37(9):1744-1750
    Mitchell C, Brodie J, White I. Sediments, nutrients and pesticide residues in event flow conditions in streams of the Mackay Whitsunday Region, Australia[J]. Marine Pollution Bulletin, 2005, 51(1-4):23-36
    Rabiet M, Margoum C, Gouy V, et al. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment-Effect of sampling frequency[J]. Environmental Pollution, 2010, 158(3):737-748
    Baz-Lomba J A, Harman C, Reid M, et al. Passive sampling of wastewater as a tool for the long-term monitoring of community exposure:Illicit and prescription drug trends as a proof of concept[J]. Water Research, 2017, 121:221-230
    Allan I J, Vrana B, Greenwood R, et al. A "toolbox" for biological and chemical monitoring requirements for the European Union's Water Framework Directive[J]. Talanta, 2006, 69(2):302-322
    Ort C, Lawrence M G, Reungoat J, et al. Sampling for PPCPs in wastewater systems:Comparison of different sampling modes and optimization strategies[J]. Environmental Science & Technology, 2010, 44(16):6289-6296
    Carlson J C, Challis J K, Hanson M L, et al. Stability of pharmaceuticals and other polar organic compounds stored on polar organic chemical integrative samplers and solid-phase extraction cartridges[J]. Environmental Toxicology and Chemistry, 2013, 32(2):337-344
    Rantalainen A L, Cretney W J, Ikonomou M G. Uptake rates of semipermeable membrane devices (SPMDs) for PCDDs, PCDFs and PCBs in water and sediment[J]. Chemosphere, 2000, 40(2):147-158
    Li H X, Helm P A, Metcalfe C D. Sampling in the Great Lakes for pharmaceuticals, personal care products, and endocrine-disrupting substances using the passive polar organic chemical integrative sampler[J]. Environmental Toxicology and Chemistry, 2010, 29(4):751-762
    Vrana B, Schüürmann G. Calibrating the uptake kinetics of semipermeable membrane devices in water:Impact of hydrodynamics[J]. Environmental Science & Technology, 2002, 36(2):290-296
    Li H X, Vermeirssen E L, Helm P A, et al. Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers[J]. Environmental Toxicology and Chemistry, 2010, 29(11):2461-2469
    Novic A J, O'Brien D S, Kaserzon S L, et al. Monitoring herbicide concentrations and loads during a flood event:A comparison of grab sampling with passive sampling[J]. Environmental Science & Technology, 2017, 51(7):3880-3891
    Gong X Y, Li K, Wu C L, et al. Passive sampling for monitoring polar organic pollutants in water by three typical samplers[J]. Trends in Environmental Analytical Chemistry, 2018, 17:23-33
    Charlestra L, Amirbahman A, Courtemanch D L, et al. Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions[J]. Environmental Pollution, 2012, 169:98-104
    Bernal-González M, Durán-Domínguez-de-Bazúa C. Development of a passive sampler for monitoring of carbamate and s-triazine pesticides in surface waters[J]. Water, Air, & Soil Pollution, 2012, 223(8):5071-5085
    Sobotka J, Lammel G, Slobodník J, et al. Dynamic passive sampling of hydrophobic organic compounds in surface seawater along the South Atlantic Ocean east-to-west transect and across the Black Sea[J]. Marine Pollution Bulletin, 2021, 168:112375
    Moeris S, Vanryckeghem F, Demeestere K, et al. A margin of safety approach for the assessment of environmentally realistic chemical mixtures in the marine environment based on combined passive sampling and ecotoxicity testing[J]. The Science of the Total Environment, 2021, 765:142748
    Vincent-Hubert F, Wacrenier C, Morga B, et al. Passive samplers, a powerful tool to detect viruses and bacteria in marine coastal areas[J]. Frontiers in Microbiology, 2021, 12:631174
    Schreiner V C, Bakanov N, Kattwinkel M, et al. Sampling rates for passive samplers exposed to a field-relevant peak of 42 organic pesticides[J]. The Science of the Total Environment, 2020, 740:140376
    Hawker D W. Modeling the response of passive samplers to varying ambient fluid concentrations of organic contaminants[J]. Environmental Toxicology and Chemistry, 2010, 29(3):591-596
    Mutzner L, Vermeirssen E L M, Ort C. Passive samplers in sewers and rivers with highly fluctuating micropollutant concentrations-Better than we thought[J]. Journal of Hazardous Materials, 2019, 361:312-320
    Shaw M, Mueller J F. Time integrative passive sampling:How well do chemcatchers integrate fluctuating pollutant concentrations?[J]. Environmental Science & Technology, 2009, 43(5):1443-1448
    Jones L, Ronan J, McHugh B, et al. Emerging priority substances in the aquatic environment:A role for passive sampling in supporting WFD monitoring and compliance[J]. Analytical Methods, 2015, 7(19):7976-7984
    Morin N, Miège C, Coquery M, et al. Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments[J]. TrAC Trends in Analytical Chemistry, 2012, 36:144-175
    Endo S, Matsuura Y. Characterizing sorption and permeation properties of membrane filters used for aquatic integrative passive samplers[J]. Environmental Science & Technology, 2018, 52(4):2118-2125
    Endo S, Matsuura Y, Vermeirssen E L M. Mechanistic model describing the uptake of chemicals by aquatic integrative samplers:Comparison to data and implications for improved sampler configurations[J]. Environmental Science & Technology, 2019, 53(3):1482-1489
    Bernard M, Boutry S, Tapie N, et al. Lab-scale investigation of the ability of polar organic chemical integrative sampler to catch short pesticide contamination peaks[J]. Environmental Science and Pollution Research International, 2022, 29(1):40-50
    DiFilippo E L, Eganhouse R P. Assessment of PDMS-water partition coefficients:Implications for passive environmental sampling of hydrophobic organic compounds[J]. Environmental Science & Technology, 2010, 44(18):6917-6925
    Jahnke A, Mayer P, Adolfsson-Erici M, et al. Equilibrium sampling of environmental pollutants in fish:Comparison with lipid-normalized concentrations and homogenization effects on chemical activity[J]. Environmental Toxicology and Chemistry, 2011, 30(7):1515-1521
    Vallejo A, Prieto A, Moeder M, et al. Calibration and field test of the polar organic chemical integrative samplers for the determination of 15 endocrine disrupting compounds in wastewater and river water with special focus on performance reference compounds (PRC)[J]. Water Research, 2013, 47(8):2851-2862
    Beckers L M, Brack W, Dann J P, et al. Unraveling longitudinal pollution patterns of organic micropollutants in a river by non-target screening and cluster analysis[J]. The Science of the Total Environment, 2020, 727:138388
    Hahn R Z, Augusto do Nascimento C, Linden R. Evaluation of illicit drug consumption by wastewater analysis using polar organic chemical integrative sampler as a monitoring tool[J]. Frontiers in Chemistry, 2021, 9:596875
  • 加载中
计量
  • 文章访问数:  1193
  • HTML全文浏览数:  1193
  • PDF下载数:  44
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-20

被动采样技术在水环境暴露监测评估中的应用与挑战

    通讯作者: 许宜平, E-mail: ypxu@rcees.ac.cn
    作者简介: 蒋沛瑀(1998—),男,硕士研究生,研究方向为水体被动采样技术,E-mail:jiangpeiyu20@mails.ucas.ac.cn
  • 1. 中国科学院生态环境研究中心, 中国科学院饮用水科学与技术重点实验室, 北京 100085;
  • 2. 中国科学院生态环境研究中心, 环境水质学国家重点实验室, 北京 100085;
  • 3. 中国科学院大学, 北京 100049
基金项目:

国家自然科学基金重点项目(52030003);国家自然科学基金面上项目(41977208)

摘要: 被动采样技术是顺应监测需求发展起来的新技术,凭借其污染物检出限低、提供时间加权平均浓度、模拟生物采样、节约成本、便于布设和适用范围广等优势,已经在各类水体环境中得到了广泛应用。本文综述了被动采样技术的基本原理、主要采样器类型、主要应用场景,着重讨论了被动采样在浓度波动情形下的应用以及相应的影响因素。被动采样在洪水、排污等污染事件的监测中有着诸多应用优势,但是复杂的浓度波动事件特征和环境基质影响带来一系列应用挑战有待解决,需要合理评估并提高被动采样在污染事件中的性能。此外,被动采样与非靶向分析、废水流行病学等其他方法的联用进一步拓宽其在水环境暴露评估中的应用途径和发展前景。

English Abstract

参考文献 (67)

目录

/

返回文章
返回