Boberg J, Mandrup K R, Jacobsen P R, et al. Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens[J]. Reproductive Toxicology, 2013, 40:41-51
Heras-González L, Latorre J A, Martinez-Bebia M, et al. The relationship of obesity with lifestyle and dietary exposure to endocrine-disrupting chemicals[J]. Food and Chemical Toxicology, 2020, 136:110983
Emara Y, Fantke P, Judson R, et al. Integrating endocrine-related health effects into comparative human toxicity characterization[J]. Science of the Total Environment, 2021, 762:143874
Fleck S C, Churchwell M I, Doerge D R, et al. Urine and serum biomonitoring of exposure to environmental estrogens Ⅱ:Soy isoflavones and zearalenone in pregnant women[J]. Food and Chemical Toxicology, 2016, 95:19-27
Robles J, Marcos J, Renau N, et al. Quantifying endogenous androgens, estrogens, pregnenolone and progesterone metabolites in human urine by gas chromatography tandem mass spectrometry[J]. Talanta, 2017, 169:20-29
Huang J, Sun J H, Chen Y H, et al. Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography-tandem mass spectrometry:A case study for breast cancer[J]. Analytica Chimica Acta, 2012, 711:60-68
Adlercreutz H, Kiuru P, Rasku S, et al. An isotope dilution gas chromatographic-mass spectrometric method for the simultaneous assay of estrogens and phytoestrogens in urine[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2004, 92(5):399-411
Foster W G, Kubwabo C, Kosarac I, et al. Free bisphenol A (BPA), BPA-glucuronide (BPA-G), and total BPA concentrations in maternal serum and urine during pregnancy and umbilical cord blood at delivery[J]. Emerging Contaminants, 2019, 5:279-287
Lacroix M Z, Puel S, Collet S H, et al. Simultaneous quantification of bisphenol A and its glucuronide metabolite (BPA-G) in plasma and urine:Applicability to toxicokinetic investigations[J]. Talanta, 2011, 85(4):2053-2059
Mustafa A M, Malintan N T, Seelan S, et al. Phytoestrogens levels determination in the cord blood from Malaysia rural and urban populations[J]. Toxicology and Applied Pharmacology, 2007, 222(1):25-32
Prasain J K, Arabshahi A, Moore D R Ⅱ, et al. Simultaneous determination of 11 phytoestrogens in human serum using a 2 min liquid chromatography/tandem mass spectrometry method[J]. Journal of Chromatography B, 2010, 878(13-14):994-1002
Wyns C, Bolca S, de Keukeleire D, et al. Development of a high-throughput LC/APCI-MS method for the determination of thirteen phytoestrogens including gut microbial metabolites in human urine and serum[J]. Journal of Chromatography B, 2010, 878(13-14):949-956
黄斌, 潘学军, 万幸, 等. 固相萃取-衍生化-气相色谱/质谱测定水中类固醇类环境内分泌干扰物[J]. 分析化学, 2011, 39(4):449-454 Huang B, Pan X J, Wan X, et al. Simultaneous determination of steroid endocrine disrupting chemicals in water by solid phase extraction-derivatization gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(4):449-454(in Chinese)
Lee S H, Jung B H, Kim S Y, et al. Determination of phytoestrogens in traditional medicinal herbs using gas chromatography-mass spectrometry[J]. The Journal of Nutritional Biochemistry, 2004, 15(8):452-460
Benedetti B, di Carro M, Mirasole C, et al. Fast derivatization procedure for the analysis of phytoestrogens in soy milk by gas chromatography tandem mass spectrometry[J]. Microchemical Journal, 2018, 137:62-70
Gray S L, Lackey B R. Optimizing a recombinant estrogen receptor binding assay for analysis of herbal extracts[J]. Journal of Herbal Medicine, 2019, 15:100252
Cotterill J V, Palazzolo L, Ridgway C, et al. Predicting estrogen receptor binding of chemicals using a suite of in silico methods-Complementary approaches of (Q)SAR, molecular docking and molecular dynamics[J]. Toxicology and Applied Pharmacology, 2019, 378:114630
He J Y, Peng T, Yang X H, et al. Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor[J]. Ecotoxicology and Environmental Safety, 2018, 148:211-219
胡海山, 赵淑娥, 芦慧, 等. QuEChERS-超高效液相色谱法快速测定果蔬中4种植物激素残留[J]. 食品安全质量检测学报, 2019, 10(10):2995-2999 Hu H S, Zhao S E, Lu H, et al. Rapid determination of 4 kinds of phytohormone residues in fruits and vegetables by QuEChERS-ultra performance liquid chromatography[J]. Journal of Food Safety & Quality, 2019, 10(10):2995-2999(in Chinese)
United States Environmental Protection Agency (US EPA). CompTox, U.S. Environmental Protection Agency[DB].[2021-10-5]. https://comptox.epa.gov/dashboard/predictions/index
National Center for Biotechnology Information. PubChem, National Center for Biotechnology Information[DB].[2021-09-21]. https://pubchem.ncbi.nlm.nih.gov/
赵娜娜, 应力, 孙方云, 等. 温州市食品环境雌激素污染状况及风险评估[J]. 温州医科大学学报, 2014, 44(3):173-176 Zhao N N, Ying L, Sun F Y, et al. Contamination levels of environmental estrogens in foods and risk assessment in Wenzhou[J]. Journal of Wenzhou Medical University, 2014, 44(3):173-176(in Chinese)
Tang Z, Wan Y P, Liu Z H, et al. Twelve natural estrogens in urines of swine and cattle:Concentration profiles and importance of eight less-studied[J]. Science of the Total Environment, 2022, 803:150042