阳离子化克雷伯氏菌絮凝剂CMBF-NIII2在生活污水中的应用
Application of cationic microbial klebsiella flocculant CMBF-NIII2 in sewage treatment
-
摘要: 微生物絮凝剂具有无毒性,绿色生产等优点,能够安全地用于给水处理及污废水处理.本文通过阳离子改性和与非生物絮凝剂复配的方法,提高MBF-NⅢ2的絮凝能力.以MBF-NⅢ2为原料,利用3-氯-2-羟丙基三甲基氯化铵(CHTAC)对其修饰,合成新型阳离子化的微生物絮凝剂(CMBF-NⅢ2)以CMBF-NⅢ2为研究主要对象,对校园生活污水进行处理.通过改变投加量、pH值、沉淀时间与温度,探究CMBF-NⅢ2絮凝能力的变化规律.将改性前的MBF-NⅢ2与改性后的CMBF-NⅢ2分别用于校园生活废水的处理,对比发现当CMBF-NⅢ2投加量为1.3 mL,pH 4.6,温度为60℃,沉降时间为40 min时,絮凝率达到91.5%,且COD去除率为87.8%,絮凝能力明显优于MBF-NⅢ2(絮凝率为47.61%),能更高效地絮凝生活污水.以MBF-NⅢ2与三氯化铁复配处理生活污水,结果表明MBF-NⅢ2和FeCl3的投加量分别为10 mg·L-1和15 mg·L-1时,絮凝率可达88.06%,不仅比单独使用MBF-NⅢ2的处理效果好,还相对减少了絮凝剂的投加量.Abstract: The microbial flocculants have the advantage of green production and low toxicity, so they can be safely used in water treatment and sewage wastewater treatment. In this paper, MBF-NⅢ2 was cationized and compounded with inorganic flocculants to enhance their flocculation ability for sewage and waste. By using CHTAC as cationic etherifying agent, the novel cationic microbial klebsiella flocculant CMBF-NⅢ2 is synthesized from MBF-NⅢ2. We want to figure out the law of the CMBF-NⅢ2 flocculation capacity from changing the dosing quantity, pH value, precipitation time and temperature. By orthogonal experiment, get the optimized optimum conditions. In the laboratory, the modified before of MBF-NⅢ2 and the modified after of CMBF-NⅢ2 are used for wastewater treatment in campus, by contrast, found that the CMBF-NⅢ2 flocculation better than the original MBF-NⅢ2. Flocculation rate of CMBF-NⅢ2 is 91.5% and COD removal rate was 87.8%, while MBF-NⅢ2 is only 47.61% on flocculation rate. It is also found that MBF-NⅢ2 compounded with ferric chloride not only has a good flocculation rate on treatment of domestic sewage, but also reduces the dosage of flocculant.
-
-
[1] DIVAKARAN R, PILLAI V N S. Flocculation of kaolinite suspensions in water by chitosan[J]. Water Research, 2001, 35(16):3904-3908. [2] NASSER M S, JAMES A E. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions[J]. Separation and Purification Technology, 2006, 52(2):241-252. [3] RADOIU M T, MARTIN D I, CALINESCU I, et al. Preparation of polyelectrolytes for wastewater treatment[J]. Journal of Hazardous Materials, 2004, 106(1):27-37. [4] 吴健, 戴桂馥. 微生物细胞的絮凝与微生物絮凝剂[J]. 环境污染与防治, 1994, 16(6):27-29. WU J, DAI G F, Microbial flocculation and microbial flocculants[J]. Environmental Pollution & Control, 1994, 16(6):27-29(in Chinese).
[5] ELKADY M F, FARAG S, ZAKI S, et al. Bacillus mojavensis strain 32A, a bioflocculant-producing bacterium isolated from an Egyptian salt production pond[J]. Bioresource Technology, 2011, 102(17):8143-8151. [6] 孟琴, 吕德伟, 张国亮. 新型生物絮凝剂——生物材料的絮凝效果评价[J]. 环境化学, 1998,17(4):355-359. MENG Q, LYU D W, ZHANG G L. New Bioflocculant——Flocculation Effect Evaluation of Biomaterials[J]. Environmental Chemistry, 1998,17(4):355-359(in Chinese).
[7] ABU-ELREESH G, ZAKI S, FARAG S, et al. Exobiopolymer from polyhydroxyalkanoate-producing transgenic yeast[J]. African Journal of Biotechnology, 2011, 10(34):6558-6563. [8] OKAIYETO K, NWODO U U, MABINYA L V, et al. Characterization of a bioflocculant produced by a consortium of Halomonas sp. Okoh and Micrococcus sp. Leo[J]. International Journal of Environmental Research and Public Health, 2013, 10(10):5097-5110. [9] LIU W J, WANG K, LI B Z, et al. Production and characterization of an intracellular bioflocculant by chryseobacterium daeguense W6 cultured in low nutrition medium[J]. Bioresource Technology, 2010, 101(3):1044-1048. [10] WANG L, MA F, LEE D J, et al. Bioflocculants from hydrolysates of corn stover using isolated strain ochrobactium ciceri W2[J]. Bioresource Technology, 2013, 145:259-263. [11] GONG W X, WANG S G, SUN X F, et al. Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment[J]. Bioresource Technology, 2008, 99(11):4668-4674. [12] ZHAO H, LIU H, ZHOU J, Characterization of a bioflocculant MBF-5 by Klebsiella pneumoniae and its application in Acanthamoeba cysts removal, Bioresour[J]. Technol,2013,137:226-232. [13] 曾苏, 陈晓平, 李南华,等. 微生物絮凝剂生产菌T1的鉴定及其对生活污水絮凝特性[J]. 环境化学, 2015,34(3):578-583. ZENG S, CHEN X P, LI N H, et al. Identification of flocculant-producing strain t1 and its flocculation characteristics in domestic sewage[J]. Environmental Chemistry, 2015(3):578-583(in Chinese).
[14] 尹华, 余莉萍, 彭辉,等. 固氮菌J-25利用味精废水产生絮凝剂的研究[J]. 环境化学, 2003, 22(6):582-587. YIN H, YU L P, PENG H, et al. Study on flocculant produced from azotobacter J-25 by using glutamic acid wastewater[J]. Environmental Chemistry, 2003, 22(6):582-587(in Chinese).
[15] 白雪蕊. 克雷伯氏菌NⅢ2共碳源发酵产絮凝剂的特性及其产品阳离子化修饰[D]. 西安:西安建筑科技大学, 2016. BAI X R, Study on the specificity and the cationic modification of co-carbon bioflocculant produced by Klebsiella sp. NⅢ2[D]. Xi'an:Xi'an University of Architecture and Technology, 2016(in Chinese). [16] 宋勃轩. 克雷伯氏菌NⅢ_2高产高活性絮凝剂工艺及其阳离子化研究[D]. 西安:西安建筑科技大学,2017. SONG B X. Process of high yield and high active bioflocculant produced by Klebsiella sp. NⅢ2 and the study on cationic modifying products[D]. Xi'an:Xi'an University of Architecture and Technology, 2017(in Chinese). [17] YANG Z, SHANG Y, LU Y, et al. Flocculation properties of biodegradable amphoteric chitosan-based flocculants[J]. Chemical Engineering Journal, 2011, 172(1):287-295. [18] 奚旦立, 孙裕生,环境监测(第四版)[M]. 北京:高等教育出版社, 2010. XI D L, SUN Y S, PING Z. Environmental monitoring (fourth edition)[M]. Beijing:Higher Education Press, 2010(in Chinese). [19] 湛雪辉. 微生物絮凝剂MBFXH的制备及其性能研究[D]. 长沙:中南大学, 2004. ZHAN X H. The research of the preparation and characterization of microbioflocculant MBFXH[D]. Changsha:Central South University, 2004(in Chinese). [20] YANG Y J, JIANG R Z, CHEN Y H, et al. Determination of sugars in heteropolysaccharide by phenol-sulfuric acid method[J]. Chinese Traditional Patent Medicine, 2005, 27(6):706-708. -

计量
- 文章访问数: 1672
- HTML全文浏览数: 1659
- PDF下载数: 47
- 施引文献: 0