阳离子化克雷伯氏菌絮凝剂CMBF-NIII2在生活污水中的应用

郭育涛, 齐亮子, 聂红云, 聂麦茜, 肖芬. 阳离子化克雷伯氏菌絮凝剂CMBF-NIII2在生活污水中的应用[J]. 环境化学, 2019, 38(3): 607-614. doi: 10.7524/j.issn.0254-6108.2018030701
引用本文: 郭育涛, 齐亮子, 聂红云, 聂麦茜, 肖芬. 阳离子化克雷伯氏菌絮凝剂CMBF-NIII2在生活污水中的应用[J]. 环境化学, 2019, 38(3): 607-614. doi: 10.7524/j.issn.0254-6108.2018030701
GUO Yutao, QI Liangzi, NIE Hongyun, NIE Maiqian, XIAO Fen. Application of cationic microbial klebsiella flocculant CMBF-NIII2 in sewage treatment[J]. Environmental Chemistry, 2019, 38(3): 607-614. doi: 10.7524/j.issn.0254-6108.2018030701
Citation: GUO Yutao, QI Liangzi, NIE Hongyun, NIE Maiqian, XIAO Fen. Application of cationic microbial klebsiella flocculant CMBF-NIII2 in sewage treatment[J]. Environmental Chemistry, 2019, 38(3): 607-614. doi: 10.7524/j.issn.0254-6108.2018030701

阳离子化克雷伯氏菌絮凝剂CMBF-NIII2在生活污水中的应用

  • 基金项目:

    中国博士后科学基金(2018M633479)资助.

Application of cationic microbial klebsiella flocculant CMBF-NIII2 in sewage treatment

  • Fund Project: Supported by Postdoctoral Science Foundation of China(2018M633479).
  • 摘要: 微生物絮凝剂具有无毒性,绿色生产等优点,能够安全地用于给水处理及污废水处理.本文通过阳离子改性和与非生物絮凝剂复配的方法,提高MBF-NⅢ2的絮凝能力.以MBF-NⅢ2为原料,利用3-氯-2-羟丙基三甲基氯化铵(CHTAC)对其修饰,合成新型阳离子化的微生物絮凝剂(CMBF-NⅢ2)以CMBF-NⅢ2为研究主要对象,对校园生活污水进行处理.通过改变投加量、pH值、沉淀时间与温度,探究CMBF-NⅢ2絮凝能力的变化规律.将改性前的MBF-NⅢ2与改性后的CMBF-NⅢ2分别用于校园生活废水的处理,对比发现当CMBF-NⅢ2投加量为1.3 mL,pH 4.6,温度为60℃,沉降时间为40 min时,絮凝率达到91.5%,且COD去除率为87.8%,絮凝能力明显优于MBF-NⅢ2(絮凝率为47.61%),能更高效地絮凝生活污水.以MBF-NⅢ2与三氯化铁复配处理生活污水,结果表明MBF-NⅢ2和FeCl3的投加量分别为10 mg·L-1和15 mg·L-1时,絮凝率可达88.06%,不仅比单独使用MBF-NⅢ2的处理效果好,还相对减少了絮凝剂的投加量.
  • 加载中
  • [1] DIVAKARAN R, PILLAI V N S. Flocculation of kaolinite suspensions in water by chitosan[J]. Water Research, 2001, 35(16):3904-3908.
    [2] NASSER M S, JAMES A E. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions[J]. Separation and Purification Technology, 2006, 52(2):241-252.
    [3] RADOIU M T, MARTIN D I, CALINESCU I, et al. Preparation of polyelectrolytes for wastewater treatment[J]. Journal of Hazardous Materials, 2004, 106(1):27-37.
    [4] 吴健, 戴桂馥. 微生物细胞的絮凝与微生物絮凝剂[J]. 环境污染与防治, 1994, 16(6):27-29.

    WU J, DAI G F, Microbial flocculation and microbial flocculants[J]. Environmental Pollution & Control, 1994, 16(6):27-29(in Chinese).

    [5] ELKADY M F, FARAG S, ZAKI S, et al. Bacillus mojavensis strain 32A, a bioflocculant-producing bacterium isolated from an Egyptian salt production pond[J]. Bioresource Technology, 2011, 102(17):8143-8151.
    [6] 孟琴, 吕德伟, 张国亮. 新型生物絮凝剂——生物材料的絮凝效果评价[J]. 环境化学, 1998,17(4):355-359.

    MENG Q, LYU D W, ZHANG G L. New Bioflocculant——Flocculation Effect Evaluation of Biomaterials[J]. Environmental Chemistry, 1998,17(4):355-359(in Chinese).

    [7] ABU-ELREESH G, ZAKI S, FARAG S, et al. Exobiopolymer from polyhydroxyalkanoate-producing transgenic yeast[J]. African Journal of Biotechnology, 2011, 10(34):6558-6563.
    [8] OKAIYETO K, NWODO U U, MABINYA L V, et al. Characterization of a bioflocculant produced by a consortium of Halomonas sp. Okoh and Micrococcus sp. Leo[J]. International Journal of Environmental Research and Public Health, 2013, 10(10):5097-5110.
    [9] LIU W J, WANG K, LI B Z, et al. Production and characterization of an intracellular bioflocculant by chryseobacterium daeguense W6 cultured in low nutrition medium[J]. Bioresource Technology, 2010, 101(3):1044-1048.
    [10] WANG L, MA F, LEE D J, et al. Bioflocculants from hydrolysates of corn stover using isolated strain ochrobactium ciceri W2[J]. Bioresource Technology, 2013, 145:259-263.
    [11] GONG W X, WANG S G, SUN X F, et al. Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment[J]. Bioresource Technology, 2008, 99(11):4668-4674.
    [12] ZHAO H, LIU H, ZHOU J, Characterization of a bioflocculant MBF-5 by Klebsiella pneumoniae and its application in Acanthamoeba cysts removal, Bioresour[J]. Technol,2013,137:226-232.
    [13] 曾苏, 陈晓平, 李南华,等. 微生物絮凝剂生产菌T1的鉴定及其对生活污水絮凝特性[J]. 环境化学, 2015,34(3):578-583.

    ZENG S, CHEN X P, LI N H, et al. Identification of flocculant-producing strain t1 and its flocculation characteristics in domestic sewage[J]. Environmental Chemistry, 2015(3):578-583(in Chinese).

    [14] 尹华, 余莉萍, 彭辉,等. 固氮菌J-25利用味精废水产生絮凝剂的研究[J]. 环境化学, 2003, 22(6):582-587.

    YIN H, YU L P, PENG H, et al. Study on flocculant produced from azotobacter J-25 by using glutamic acid wastewater[J]. Environmental Chemistry, 2003, 22(6):582-587(in Chinese).

    [15] 白雪蕊. 克雷伯氏菌NⅢ2共碳源发酵产絮凝剂的特性及其产品阳离子化修饰[D]. 西安:西安建筑科技大学, 2016. BAI X R, Study on the specificity and the cationic modification of co-carbon bioflocculant produced by Klebsiella sp. NⅢ2[D]. Xi'an:Xi'an University of Architecture and Technology, 2016(in Chinese).
    [16] 宋勃轩. 克雷伯氏菌NⅢ_2高产高活性絮凝剂工艺及其阳离子化研究[D]. 西安:西安建筑科技大学,2017. SONG B X. Process of high yield and high active bioflocculant produced by Klebsiella sp. NⅢ2 and the study on cationic modifying products[D]. Xi'an:Xi'an University of Architecture and Technology, 2017(in Chinese).
    [17] YANG Z, SHANG Y, LU Y, et al. Flocculation properties of biodegradable amphoteric chitosan-based flocculants[J]. Chemical Engineering Journal, 2011, 172(1):287-295.
    [18] 奚旦立, 孙裕生,环境监测(第四版)[M]. 北京:高等教育出版社, 2010. XI D L, SUN Y S, PING Z. Environmental monitoring (fourth edition)[M]. Beijing:Higher Education Press, 2010(in Chinese).
    [19] 湛雪辉. 微生物絮凝剂MBFXH的制备及其性能研究[D]. 长沙:中南大学, 2004. ZHAN X H. The research of the preparation and characterization of microbioflocculant MBFXH[D]. Changsha:Central South University, 2004(in Chinese).
    [20] YANG Y J, JIANG R Z, CHEN Y H, et al. Determination of sugars in heteropolysaccharide by phenol-sulfuric acid method[J]. Chinese Traditional Patent Medicine, 2005, 27(6):706-708.
  • 加载中
计量
  • 文章访问数:  1672
  • HTML全文浏览数:  1659
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-03-07
  • 刊出日期:  2019-03-15
郭育涛, 齐亮子, 聂红云, 聂麦茜, 肖芬. 阳离子化克雷伯氏菌絮凝剂CMBF-NIII2在生活污水中的应用[J]. 环境化学, 2019, 38(3): 607-614. doi: 10.7524/j.issn.0254-6108.2018030701
引用本文: 郭育涛, 齐亮子, 聂红云, 聂麦茜, 肖芬. 阳离子化克雷伯氏菌絮凝剂CMBF-NIII2在生活污水中的应用[J]. 环境化学, 2019, 38(3): 607-614. doi: 10.7524/j.issn.0254-6108.2018030701
GUO Yutao, QI Liangzi, NIE Hongyun, NIE Maiqian, XIAO Fen. Application of cationic microbial klebsiella flocculant CMBF-NIII2 in sewage treatment[J]. Environmental Chemistry, 2019, 38(3): 607-614. doi: 10.7524/j.issn.0254-6108.2018030701
Citation: GUO Yutao, QI Liangzi, NIE Hongyun, NIE Maiqian, XIAO Fen. Application of cationic microbial klebsiella flocculant CMBF-NIII2 in sewage treatment[J]. Environmental Chemistry, 2019, 38(3): 607-614. doi: 10.7524/j.issn.0254-6108.2018030701

阳离子化克雷伯氏菌絮凝剂CMBF-NIII2在生活污水中的应用

  • 1.  西安建筑科技大学理学院, 西安, 710055;
  • 2.  西安建筑科技大学环境与市政工程学院, 西安, 710055
基金项目:

中国博士后科学基金(2018M633479)资助.

摘要: 微生物絮凝剂具有无毒性,绿色生产等优点,能够安全地用于给水处理及污废水处理.本文通过阳离子改性和与非生物絮凝剂复配的方法,提高MBF-NⅢ2的絮凝能力.以MBF-NⅢ2为原料,利用3-氯-2-羟丙基三甲基氯化铵(CHTAC)对其修饰,合成新型阳离子化的微生物絮凝剂(CMBF-NⅢ2)以CMBF-NⅢ2为研究主要对象,对校园生活污水进行处理.通过改变投加量、pH值、沉淀时间与温度,探究CMBF-NⅢ2絮凝能力的变化规律.将改性前的MBF-NⅢ2与改性后的CMBF-NⅢ2分别用于校园生活废水的处理,对比发现当CMBF-NⅢ2投加量为1.3 mL,pH 4.6,温度为60℃,沉降时间为40 min时,絮凝率达到91.5%,且COD去除率为87.8%,絮凝能力明显优于MBF-NⅢ2(絮凝率为47.61%),能更高效地絮凝生活污水.以MBF-NⅢ2与三氯化铁复配处理生活污水,结果表明MBF-NⅢ2和FeCl3的投加量分别为10 mg·L-1和15 mg·L-1时,絮凝率可达88.06%,不仅比单独使用MBF-NⅢ2的处理效果好,还相对减少了絮凝剂的投加量.

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回