地质封存CO2泄漏对蚯蚓的毒性效应

赵晨阳, 马俊杰, 薛璐, 田园, 刘丹. 地质封存CO2泄漏对蚯蚓的毒性效应[J]. 生态毒理学报, 2020, 15(2): 210-219. doi: 10.7524/AJE.1673-5897.20190919001
引用本文: 赵晨阳, 马俊杰, 薛璐, 田园, 刘丹. 地质封存CO2泄漏对蚯蚓的毒性效应[J]. 生态毒理学报, 2020, 15(2): 210-219. doi: 10.7524/AJE.1673-5897.20190919001
Zhao Chenyang, Ma Junjie, Xue Lu, Tian Yuan, Liu Dan. Toxic Effects of CO2 Leakage from Geological Storage on Earthworms[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 210-219. doi: 10.7524/AJE.1673-5897.20190919001
Citation: Zhao Chenyang, Ma Junjie, Xue Lu, Tian Yuan, Liu Dan. Toxic Effects of CO2 Leakage from Geological Storage on Earthworms[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 210-219. doi: 10.7524/AJE.1673-5897.20190919001

地质封存CO2泄漏对蚯蚓的毒性效应

    作者简介: 赵晨阳(1994-),女,硕士研究生,研究方向为生态影响与生态监测研究,E-mail:ZCYsuk9898@163.com
  • 基金项目:

    国家高技术研究发展计划(863计划)资助项目(2012AA0501030);陕西省教育厅自然科学研究计划资助项目(19JK1001)

  • 中图分类号: X171.5

Toxic Effects of CO2 Leakage from Geological Storage on Earthworms

  • Fund Project:
  • 摘要: 二氧化碳捕集与封存技术(CO2 capture and storage, CCS)是当前国际上公认的CO2减排的有效措施,但封存在地下的CO2仍然因为各种不稳定因素存在泄漏风险,对土壤环境及土壤生态系统产生威胁。选择赤子爱胜蚓为研究对象,通过模拟高浓度CO2对蚯蚓形态与生理变化的影响,探究CCS泄漏所产生的土壤高浓度CO2对蚯蚓的毒性效应。研究表明,土壤高浓度CO2使蚯蚓出现生殖环带肿大、尾部串珠以及断尾等外部形态变化,皮肤和刚毛受到损伤并且表皮发生褶皱等现象;随着CO2浓度的增加以及暴露时间的延长,蚯蚓的死亡率不断增加,土壤高浓度CO2对蚯蚓的7 d和14 d半致死浓度分别为26.39%和17.78%;蚯蚓体腔细胞溶酶体中性红保留时间(NRRT)减少。因此,蚯蚓有望作为监测CO2泄漏的指示生物,NRRT可作为识别CO2泄漏的敏感指标。
  • 加载中
  • International Energy Agency. China host high-level gathering of energy ministers and industry leaders to affirm the importance of carbon capture[EB/OL].(2017-07-15)[2019-08-03]. https://www.iea.org/newsroom/news/2017/june/iea-and-china-host-high-level-gathering-of-energyministers-and-industry-leaders.html
    Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable & Sustainable Energy Reviews, 2014, 39:426-443
    纪翔,马欣,韩耀杰,等.箱体模拟地质封存CO2泄漏速度差异对植物的影响[J].农业工程学报, 2018, 34(2):242-247

    Ji X, Ma X, Han Y J, et al. Effect of different leakage speeds on plants in carbon capture and storage by simulation in chamber[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2):242-247(in Chinese)

    Ha-Duong M, Loisel R. Zero is the only acceptable leakage rate for geologically stored CO2:An editorial comment[J]. Climatic Change, 2009, 93(3/4):311-317
    谢健,魏宁,吴礼舟,等. CO2地质封存泄漏研究进展[J].岩土力学, 2017, 38(S1):181-188

    Xie J, Wei N, Wu L Z, et al.Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanic, 2017, 38(S1):181-188(in Chinese)

    Vialle S, Druhan J L, Maher K. Multi-phase flow simulation of CO 2 leakage through a fractured caprock in response to mitigation strategies[J]. International Journal of Greenhouse Gas Control, 2016, 44:11-25
    任韶然,李德祥,张亮,等.地质封存过程中泄漏途径及风险分析[J].石油学报, 2014, 35(3):591-601

    Ren S R, Li D X, Zhang L, et al. Leakage pathways and risk analysis of carbon dioxide in geologic storage[J]. Acta Petrolei Sinica, 2014, 35(3):591-601(in Chinese)

    韩耀杰,张雪艳,马欣,等.地质封存CO2泄漏对玉米根系形态的影响[J].生态学报, 2019, 39(20):7737-7744

    Han Y J, Zhang X Y, Ma X, et al. Impact of stored CO2 leakage on root morphology of maize[J]. Acta Ecologica Sinica, 2019, 39(20):7737-7744(in Chinese)

    刘兰翠,曹东,王金南.碳捕获与封存技术潜在的环境影响及对策建议[J].气候变化研究进展, 2010, 6(4):290-295

    Liu L C, Cao D, Wang J N. Environmental impacts of carbon capture and storage technology and some suggestions[J]. Advances in Climate Change Research, 2010, 6(4):290-295(in Chinese)

    Blackford J C, Beaubien S E, Foekema E M, et al. A guide to potential impacts of leakage from CO2 storage[R]. The Research Institute in Science of Cyber Securit, 2014
    李琦,刘桂臻,蔡博峰,等.二氧化碳地质封存环境风险评估的空间范围确定方法研究[J].环境工程, 2018, 36(2):27-32

    Li Q, Liu G Z, Cai B F, et al. Principle and methodology of determining the spatial range of environmental risk assessment of carbon dioxide geological storage[J]. Environmental Engineering, 2018, 36(2):27-32(in Chinese)

    李琦,蔡博峰,陈帆,等.二氧化碳地质封存的环境风险评价方法研究综述[J].环境工程, 2019, 37(2):13-21

    Li Q, Cai B F, Chen F, et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 2019, 37(2):13-21(in Chinese)

    Beaubien S E, Ciotoli G, Coombs P, et al. The impact of a naturally occurring CO2 gas vent on the shallow ecosystem and soil chemistry of a Mediterranean pasture (Latera, Italy)[J]. International Journal of Greenhouse Gas Control, 2008, 2(3):373-387
    Zhang X Y, Ma X, Zhao Z, et al. CO2 leakage-induced vegetation decline is primarily driven by decreased soil O 2[J]. Journal of Environmental Management, 2016, 171(2):225-230
    张旺园,张绍良,陈浮,等.模拟地下CO2泄漏对土壤微生物群落的短期影响[J].农业环境科学学报, 2017, 36(6):1167-1176

    Zhang W Y, Zhang S L, Chen F, et al. Short-term effects of simulated underground CO2 leakage on the soil microbial community[J]. Journal of Agro-Environment Science, 2017, 36(6):1167-1176(in Chinese)

    张慧慧,李春荣,邓红章,等.二氧化碳入侵土壤包气带对微生物群落的影响[J].安全与环境学报, 2016, 16(2):377-381

    Zhang H H, Li C R, Deng H Z, et al. Effect of carbon dioxide permeation into soil's unsaturated layer on the microbial community[J]. Journal of Safety and Environment, 2016, 16(2):377-381(in Chinese)

    Arnaud C, Saint-Denis M, Norborne J F, et al. Influences of different standardized test methods on biochemical responses in the earthworm Eisenia foetida andrei[J]. Soil Biology Biochemistry, 2000, 32(1):67-73
    Blouin M, Hodson M E, Delgado E A, et al. A review of earthworm impact on soil function and ecosystem services[J]. European Journal of Soil Science, 2013, 64:161-182
    孔志明,臧宇,崔玉霞,等.两种新型杀虫剂在不同暴露系统对蚯蚓的急性毒性[J].生态学杂志, 1999, 18(6):20-23

    , 37 Kong Z M, Zang Y, Cui Y X, et al. The acute toxicity of two new types of pesticides to earthworms through different exposure systems[J]. Chinese Journal of Ecology, 1999, 18(6):20-23, 37(in Chinese)

    张池,周波,吴家龙,等.蚯蚓在我国南方土壤修复中的应用[J].生物多样性, 2018, 26(10):65-76

    Zhang C, Zhou B, Wu J L, et al. Application of earthworms on soil remediation in southern China[J]. Biodiversity Science, 2018, 26(10):65-76(in Chinese)

    Lavelle P, Spain A V. Soil Ecology[M]. Dordrecht:Kluwer Academic Publishers, 2010:285-291
    Blouin M, Hodson M E, Delgado E A, et al. A review of earthworm impact on soil function and ecosystem services[J]. European Journal of Soil Science, 2013, 64(2):161-182
    Patrick L, Alister V S. Soil Ecology[M]. New York:Kluwer Academic Publishers, 2003:288-290
    关笑坤.二氧化碳在土壤包气带中的运移规律及对环境影响研究[D].西安:长安大学, 2014:14-31 Guan X K.Carbon dioxide transport in the unsaturated soil and its environmental impact[D]. Xi'an:Chang'an University, 2014:14

    -31(in Chinese)

    The Organization for Economic Co-operation and Development (OECD). No. 207:Earthworm acute toxicity tests. OECD guideline for testing of chemicals[S]. Paris:OECD, 1984
    谢显传.土壤中十溴联苯醚(BDe-209)对赤子爱胜蚓(Eisenia fetida)和黑麦草(Lolium perenne)的生物有效性及其生物毒性效应[D].南京:南京大学, 2010:71-73 Xie X C. Bioavailability and biological toxicity effects ofBDe-209 in soil on Eisenia fetida and Lolium perenne[D]. Nanjing:Nanjing University, 2010

    :71-73(in Chinese)

    Maboeta M S, Reinecke S A, Reinecke A J. The relationship between lysosomal biomarker and organismal responses in an acute toxicity test with Eisenia fetida (Oligochaeta) exposed to the fungicide copper oxychloride[J]. Environmental Research, 2004, 96(1):95-101
    Samal S, Mishra C S K, Sahoo S. Setal-epidermal, muscular and enzymatic anomalies induced by certain agrochemicals in the earthworm Eudrilus eugeniae (Kinberg)[J]. Environmental Science and Pollution Research, 2019, 26(8):8039-8049
    Vijaya T M, Middha S K, Usha T, et al. Morphological and histological studies on the vermicomposting Indian earthworm Eudrilus eugeniae[J]. World Journal of Zoology, 2012, 7(2):165-170
    张丙华,张倩,耿春香,等.地质封存CO2泄露对土壤理化性质的影响[J].广州化工, 2016, 44(7):156-159

    Zhang B H, Zhang Q, Geng C X, et al. Influence on physical and chemical properties of soil for the leakage of carbon dioxide during geological storage[J]. Guangzhou Chemical Industry, 2016, 44(7):156-159(in Chinese)

    刘馥雯,罗启仕,王漫莉,等.铬污染土壤稳定化处理对蚯蚓的毒性效应[J].环境科学学报, 2019, 39(3):952-957

    Liu F W, Luo Q S, Wang M L, et al. The biotoxicity effect on earthworms by stabilization treatment of Cr-contaminated soil[J]. Acta Scientiae Circumstantiae, 2019, 39(3):952-957(in Chinese)

    Nusair S D, Zarour Y S A, Altarifi A A, et al. Effects of dibenzo-p-dioxins/dibenzofurans on acetylcholinesterase activity and histopathology of the body wall of earthworm Eisenia andrei:A potential biomarker for ecotoxicity monitoring[J]. Water, Air & Soil Pollution, 2017, 228(7):266
    University of Wisconsin-Madison. Life of an earthworm[EB/OL].[2019-11-03]. https://journeynorth.org/tm/worm/WormLife.html
    王笑,王帅,滕明姣,等.两种代表性蚯蚓对设施菜地土壤微生物群落结构及理化性质的影响[J].生态学报, 2017, 37(15):5146-5156

    Wang X, Wang S, Teng M J, et al. Impacts of two typical earthworms on soil microbial community structure and physicochemical properties in a greenhouse vegetable field[J]. Acta Ecologica Sinica, 2017, 37(15):5146-5156(in Chinese)

    Pierce S, Sjögersten S. Effects of below ground CO2 emissions on plant and microbial communities[J]. Plant and Soil, 2009, 325(1-2):197-205
    Zhao X H, Deng H Z, Wang W K, et al. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau[J]. Scientific Reports, 2017, 7(1):3001
    Mauvezin C, Nagy P, Juhász G, et al. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification[J]. Nature Communications, 2015, 6(1):7007
    邹辉,孙建,于凡,等.镉暴露对BRL 3A细胞溶酶体的影响[J].中国兽医科学, 2019(12):1602-1608 Zou H, Sun J, Yu F, et al.Effect of cadmium on lysosomes in BRL 3

    A cells[J]. Chinese Veterinary Science, 2019(12):1602-1608(in Chinese)

    Moore M N. Lysosomal cytochemistry in marine environmental monitoring[J]. The Histochemical Journal, 1990, 22(4):187-191
    Svendsen C, Meharg A A, Freestone P, et al. Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire[J]. Applied Soil Ecology, 1996, 3(2):99-107
    Kroemer G, Jäättelä M. Lysosomes and autophagy in cell death control[J]. Nature Reviews Cancer, 2005, 5(11):886-897
    Liu B, Fang M, Hu Y, et al. Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation[J]. Autophagy, 2014, 10(3):416-430
    Calisi A, Grimaldi A, Leomanni A, et al. Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity[J]. Ecotoxicology, 2016, 25(4):677-687
    Moore M N, Allen J I, Mcveigh A. Environmental prognostics:An integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status[J]. Marine Environmental Research, 2006, 61(3):278-304
    Fuchs J, Piola L, Elio P G, et al. Coelomocyte biomarkers in the earthworm Eisenia fetida exposed to 2,4,6-trinitrotoluene (TNT)[J]. Environmental Monitoring & Assessment, 2011, 175(1-4):127-137
    Booth L H, O'Halloran K. A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos[J]. Environmental Toxicology & Chemistry, 2010, 20(11):2494-2502
    Svendsen C, Weeks J M. The use of a lysosome assay for the rapid assessment of cellular stress from copper to the freshwater snail Viviparus contectus (Millet)[J]. Marine Pollution Bulletin, 1995, 31(1-3):139-142
  • 加载中
计量
  • 文章访问数:  1520
  • HTML全文浏览数:  1520
  • PDF下载数:  19
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-19

地质封存CO2泄漏对蚯蚓的毒性效应

    作者简介: 赵晨阳(1994-),女,硕士研究生,研究方向为生态影响与生态监测研究,E-mail:ZCYsuk9898@163.com
  • 1. 西北大学, 西安 710127;
  • 2. 二氧化碳捕集与封存技术国家地方联合工程研究中心, 西安 710127;
  • 3. 榆林学院, 榆林 719000
基金项目:

国家高技术研究发展计划(863计划)资助项目(2012AA0501030);陕西省教育厅自然科学研究计划资助项目(19JK1001)

摘要: 二氧化碳捕集与封存技术(CO2 capture and storage, CCS)是当前国际上公认的CO2减排的有效措施,但封存在地下的CO2仍然因为各种不稳定因素存在泄漏风险,对土壤环境及土壤生态系统产生威胁。选择赤子爱胜蚓为研究对象,通过模拟高浓度CO2对蚯蚓形态与生理变化的影响,探究CCS泄漏所产生的土壤高浓度CO2对蚯蚓的毒性效应。研究表明,土壤高浓度CO2使蚯蚓出现生殖环带肿大、尾部串珠以及断尾等外部形态变化,皮肤和刚毛受到损伤并且表皮发生褶皱等现象;随着CO2浓度的增加以及暴露时间的延长,蚯蚓的死亡率不断增加,土壤高浓度CO2对蚯蚓的7 d和14 d半致死浓度分别为26.39%和17.78%;蚯蚓体腔细胞溶酶体中性红保留时间(NRRT)减少。因此,蚯蚓有望作为监测CO2泄漏的指示生物,NRRT可作为识别CO2泄漏的敏感指标。

English Abstract

参考文献 (47)

目录

/

返回文章
返回