镉对大型溞肠道结构及消化酶活力的影响

高菲, 林威, 王兰, 王茜. 镉对大型溞肠道结构及消化酶活力的影响[J]. 生态毒理学报, 2020, 15(2): 201-209. doi: 10.7524/AJE.1673-5897.20191011001
引用本文: 高菲, 林威, 王兰, 王茜. 镉对大型溞肠道结构及消化酶活力的影响[J]. 生态毒理学报, 2020, 15(2): 201-209. doi: 10.7524/AJE.1673-5897.20191011001
Gao Fei, Lin Wei, Wang Lan, Wang Qian. Effect of Cadmium on Intestinal Structure and Digestive Enzymes Activities of Daphnia magna[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 201-209. doi: 10.7524/AJE.1673-5897.20191011001
Citation: Gao Fei, Lin Wei, Wang Lan, Wang Qian. Effect of Cadmium on Intestinal Structure and Digestive Enzymes Activities of Daphnia magna[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 201-209. doi: 10.7524/AJE.1673-5897.20191011001

镉对大型溞肠道结构及消化酶活力的影响

    作者简介: 高菲(1994-),女,硕士研究生,研究方向为水生动物毒理学,E-mail:936111851@qq.com
  • 基金项目:

    环境化学与生态毒理学国家重点实验室开放基金研究课题资助项目(KF2018-14);山西省重点研发计划(社会发展领域)项目(201803D31026)

  • 中图分类号: X171.5

Effect of Cadmium on Intestinal Structure and Digestive Enzymes Activities of Daphnia magna

  • Fund Project:
  • 摘要: 镉(Cd2+)作为水环境中毒性较强的污染物之一,对水生动物各器官均造成了不良影响。为了了解镉对消化系统的毒性机理,研究了镉胁迫对大型溞(Daphnia magna)肠道组织及消化酶活力的影响。依据国家《地表水环境质量标准》(GB3838—2002)中Ⅴ类水质的镉浓度标准限值的1倍、5倍和9倍设置3个镉浓度组(0.01、0.05、0.09 mg L−1)和1个对照组,分别处理24、48 h。结果表明,镉处理对大型溞肠道结构、淀粉酶、脂肪酶和胰蛋白酶活力均产生了影响。首先,随着镉浓度的升高,显微结构显示,大型溞肠道上皮细胞排列松散、不整齐,并出现“空泡化”;内侧纹状缘严重脱落。亚显微结构显示,肠道微绒毛出现断裂、溶解消失现象;线粒体发生肿胀、空泡化,嵴断裂或消失。其次,淀粉酶活力显著降低(P<0.01),与镉浓度之间存在剂量-效应关系;脂肪酶活力在镉浓度为0.01~0.05 mg L−1时升高,在0.09 mg L−1时活力被抑制;胰蛋白酶在镉处理24 h浓度为0.01 mg L−1时显著高于对照组(P<0.05),在镉处理48 h时,各浓度组均显著低于对照组(P<0.01)。镉对大型溞消化酶活力的最低可观察效应浓度(LOEC)为0.01 mg L−1。大型溞作为常用的毒理学监测动物,实验结果将为含镉废水排放标准的完善提供理论依据。
  • 加载中
  • Han D, Currell M J, Cao G L. Deep challenges for China's war on water pollution[J]. Environmental Pollution, 2016, 218:1222-1233
    朱青青,王中良.中国主要水系沉积物中重金属分布特征及来源分析[J].地球与环境, 2012, 40(3):305-313

    Zhu Q Q, Wang Z L. Distribution characteristics and source analysis of heavy metals in sediment of main river systems in China[J]. Earth and Environment, 2012, 40(3):305-313(in Chinese)

    丁之勇,蒲佳,吉力力·阿不都外力.中国主要湖泊表层沉积物重金属污染特征与评价分析[J].环境工程, 2017, 35(6):136-141

    Ding Z Y, Pu J, Jilili A. Heavy metal contamination characteristics and its assessment in surface of major lakes in Chnia[J]. Environmental Engineering, 2017, 35(6):136-141(in Chinese)

    Yao X, Ma F, Li Y, et al. Effect of water cadmium concentration and water level on the growth performance of Salix triandroides cuttings[J]. Environmental Science and Pollution Research, 2018, 25(8):8002-8011
    Zhu Q L, Guo S N, Yuan S S, et al. Heat indicators of oxidative stress, inflammation and metal transport show dependence of cadmium pollution history in the liver of female zebrafish[J]. Aquatic Toxicology, 2017, 191:1-9
    Zhai Q, Tian F, Zhao J, et al. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier[J]. Applied Environmental Microbiology, 2016, 82(14):4429-4440
    楼哲丰,曹琼洁,冯钰淇,等.镉对果蝇肠道上皮细胞损伤和调控中肠干细胞增殖、分化机制的研究[J].中国细胞生物学学报, 2013, 35(5):602-608

    Lou Z F, Cao Q J, Feng Y Q, et al. Research on effects of cadmium induced intestinal epithelial cell injury and regulation on intestinal stem cells regeneration and differentiation in Drosophila mid-gut[J]. Chinese Journal of Cell Biology, 2013, 35(5):602-608(in Chinese)

    Xie D, Li Y, Liu Z, et al. Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish (Pelteobagrus fulvidraco)[J]. Comparative Biochemistry and Physiology, 2019, 222:65-73
    Wu H, Xuan R, Li Y, et al. Effects of cadmium exposure on digestive enzymes, antioxidant enzymes, and lipid peroxidation in the freshwater crab Sinopotamon henanense[J]. Environmental Science and Pollution Research International, 2013, 20(6):4085-4092
    Borase H P, Patil S V, Singhal R S. Effect of size Moina macrocopa as a non-target aquatic organism for assessment of ecotoxicity of silver nanoparticles[J]. Chemosphere, 2019, 219:713-723
    刘国光,徐海娟,王莉霞,等.环境有机污染物对蚤的毒性研究[J].环境与健康杂志, 2003, 20(6):369-371

    Liu G G, Xu H J, Wang L X, et al. Study on toxicity of organic pollutants to Daphnia[J]. Journal of Environment and Health, 2003, 20(6):369-371(in Chinese)

    Liu Y, Yan Z, Zhang L, et al. Food up-take and reproduction performance of Daphnia magna under the exposure of bisphenols[J]. Ecotoxicology and Environmental Safety, 2019, 170:47-54
    国家环境保护总局. GB/TI3266-91水质物质对溞类(大型溞)急性毒性测定方法[S].北京:中国标准出版社, 1991 State Environmental Protection Administration. Water quality-Determination of the acute toxicity of substance to Daphnia (Daphnia magna Straus)[S]. Beijing:Standards Press of China, 1991(in Chinese)
    国家环境保护总局. GB3838-2002地表水环境质量标准[S].北京:中国标准出版社, 2002 State Environmental Protection Administration. Environmental quality standard for surface water[S]. Beijing:Standards Press of China, 2002(in Chinese)
    Barata C, Markich S J, Baird D J, et al. The relative importance of water and food as cadmium sources to Daphnia magna Straus[J]. Aquatic Toxicology, 2002, 61(3):143-154
    武玉珑.苯酚对多刺裸腹溞消化机能的影响[D].太原:山西大学, 2011:1-63 Wu Y L. Effects of phenol on digestive function of Moina macrocopa[D]. Taiyuan:Shanxi University, 2011:1

    -63(in Chinese)

    黄芳,刘文惠,吴轶,等.绿原酸缓解镉暴露致大鼠肠道损伤[J].食品科学, 2018, 39(17):187-191

    Huang F, Liu W H, Wu Y, et al. Chlorogenic acid attenuates cadmium-induced intestinal injury in rats[J]. Food Science, 2018, 39(17):187-191(in Chinese)

    吴波.参环毛蚓对重金属镉离子的生理响应及其变化规律的研究[D].广州:广州中医药大学, 2010:1-103 Wu B. The study on physiology response and change regularity of heavy metal cadmium ion in Pheretima asperillum[D]. Guangzhou:Guangzhou University of Chinese Medicine, 2010:1

    -103(in Chinese)

    徐晓倩,翁显龙,赵云龙,等.镉对隆线溞的毒性效应及对其肠壁细胞超微结构的影响[J].复旦学报:自然科学版, 2009, 48(3):375-380

    Xu X Q, Weng X L, Zhao Y L, et al. Effects of waterborne cadmium on development, reproduction and ultrstructure of Daphnia carinata[J]. Journal of Fudan University:Natural Science, 2009, 48(3):375-380(in Chinese)

    Soukupova K, Rudolf E. Suppression of proliferation and activation of cell death by sodium selenite involves mitochondria and lysosomes in chemoresistant bladder cancer cells[J]. Journal of Trace Elements in Medicine and Biology, 2019, 52:58-67
    马怡然,尚德淑,方文刚,等.细胞紧密连接的结构组成及其调控的研究进展[J].解剖科学进展, 2010, 16(1):71-74

    Ma Y R, Shang D S, Fang W G, et al. The progress of cell tight junction structure and regulation[J]. Progress of Anatomical Sciences, 2010, 16(1):71-74(in Chinese)

    孙虹霞,夏嫱,唐文成,等. Ni2+胁迫对斜纹夜蛾幼虫血淋巴中能量物质水平的适应性调节[J].昆虫学报, 2010, 53(4):361-368

    Sun H X, Xia Q, Tang W C, et al. Regulation of energy reserves in the hemolymph of Spodoptera litura Fabricius larvae under nickel stress[J]. Acta Entomologica Sinica, 2010, 53(4):361-368(in Chinese)

    Puerari R C, Da Costa C H, Vicentini D S, et al. Synthesis, characterization and toxicological evaluation of Cr2O3 nanoparticles using Daphnia magna and Aliivibrio fischeri[J]. Ecotoxicology and Environmental Safety, 2016, 128:36-43
    郭鹄飞.镉对大型溞摄食生长繁殖的影响及机制的初探[D].太原:山西大学, 2018:8-17 Guo H F. Effects of cadmium on food-intake, growth, reproduction and energy metabolism in the water flea, Daphnia magna (Cladocera)[D]. Taiyuan:Shanxi University, 2018:8

    -17(in Chinese)

    Huo J, Dong A, Wang Y, et al. Cadmium induces histopathological injuries and ultrastructural changes in the liver of freshwater turtle (Chinemys reevesii)[J]. Chemosphere, 2017, 186:459-465
    Wu H, Xuan R, Li Y, et al. Biochemical, histological and ultrastructural alterations of the alimentary system in the freshwater crab Sinopotamon henanense subchronically exposed to cadmium[J]. Ecotoxicology, 2014, 23(1):65-75
    Ymi H, Turies C, Palluel O, et al. Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus):Interest of digestive enzymes as biomarkers[J]. Aquatic Toxicology, 2018, 199:252-262
    Anushia C, Sampath Kumar P, Karthikeyan P. Biochemical changes induced in Tilapia mossambicus during copper and cadmium acute intoxication[J]. International Journal of Pharmaceutical and Life Sciences, 2012, 2(3):38-52
    王海英.大菱鲆主要消化酶——蛋白酶、脂肪酶、淀粉酶的研究[D].青岛:中国海洋大学, 2004:47-51 Wang H Y. Digestive enzyme in turbot Scophthalmus maximus L.[D]. Qingdao:Ocean University of China, 2004:47

    -51(in Chinese)

    崔峰.镉在鱼虾体内的富集及其对生长、消化酶活性的影响[D].南京:南京农业大学, 2009:11-23 Cui F. Study on cadmium enrichment in aquatic animals and its effect on the growth, digestive enzyme activities[D]. Nanjing:Nanjing Agricultural University, 2009:11

    -23(in Chinese)

    陈肖肖.重金属Cd和Cu对泥蚶(Tegillarca granosa)的毒理学效应[D].上海:华东理工大学, 2013:1-11 Chen X X. Effects of heavy metal Cd and Cu on toxicity of Tegillarca granosa[D]. Shanghai:East China University of Science and Technology, 2013:1

    -11(in Chinese)

  • 加载中
计量
  • 文章访问数:  1808
  • HTML全文浏览数:  1808
  • PDF下载数:  66
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-11

镉对大型溞肠道结构及消化酶活力的影响

    作者简介: 高菲(1994-),女,硕士研究生,研究方向为水生动物毒理学,E-mail:936111851@qq.com
  • 山西大学生命科学学院, 太原 030006
基金项目:

环境化学与生态毒理学国家重点实验室开放基金研究课题资助项目(KF2018-14);山西省重点研发计划(社会发展领域)项目(201803D31026)

摘要: 镉(Cd2+)作为水环境中毒性较强的污染物之一,对水生动物各器官均造成了不良影响。为了了解镉对消化系统的毒性机理,研究了镉胁迫对大型溞(Daphnia magna)肠道组织及消化酶活力的影响。依据国家《地表水环境质量标准》(GB3838—2002)中Ⅴ类水质的镉浓度标准限值的1倍、5倍和9倍设置3个镉浓度组(0.01、0.05、0.09 mg L−1)和1个对照组,分别处理24、48 h。结果表明,镉处理对大型溞肠道结构、淀粉酶、脂肪酶和胰蛋白酶活力均产生了影响。首先,随着镉浓度的升高,显微结构显示,大型溞肠道上皮细胞排列松散、不整齐,并出现“空泡化”;内侧纹状缘严重脱落。亚显微结构显示,肠道微绒毛出现断裂、溶解消失现象;线粒体发生肿胀、空泡化,嵴断裂或消失。其次,淀粉酶活力显著降低(P<0.01),与镉浓度之间存在剂量-效应关系;脂肪酶活力在镉浓度为0.01~0.05 mg L−1时升高,在0.09 mg L−1时活力被抑制;胰蛋白酶在镉处理24 h浓度为0.01 mg L−1时显著高于对照组(P<0.05),在镉处理48 h时,各浓度组均显著低于对照组(P<0.01)。镉对大型溞消化酶活力的最低可观察效应浓度(LOEC)为0.01 mg L−1。大型溞作为常用的毒理学监测动物,实验结果将为含镉废水排放标准的完善提供理论依据。

English Abstract

参考文献 (31)

目录

/

返回文章
返回