湿式氧化再生饱和片状活性炭及机理研究

吴慧玲, 卫皇曌, 孙文静, 靳承煜, 孙承林. 湿式氧化再生饱和片状活性炭及机理研究[J]. 环境化学, 2019, 38(3): 572-580. doi: 10.7524/j.issn.0254-6108.2018042805
引用本文: 吴慧玲, 卫皇曌, 孙文静, 靳承煜, 孙承林. 湿式氧化再生饱和片状活性炭及机理研究[J]. 环境化学, 2019, 38(3): 572-580. doi: 10.7524/j.issn.0254-6108.2018042805
WU Huiling, WEI Huangzhao, SUN Wenjing, JIN Chengyu, SUN Chenglin. Wet air oxidation regeneration process of flake activated carbon and the mechanism[J]. Environmental Chemistry, 2019, 38(3): 572-580. doi: 10.7524/j.issn.0254-6108.2018042805
Citation: WU Huiling, WEI Huangzhao, SUN Wenjing, JIN Chengyu, SUN Chenglin. Wet air oxidation regeneration process of flake activated carbon and the mechanism[J]. Environmental Chemistry, 2019, 38(3): 572-580. doi: 10.7524/j.issn.0254-6108.2018042805

湿式氧化再生饱和片状活性炭及机理研究

  • 基金项目:

    山东省科技重大专项(2015ZDXX0402B01),中国科学院院重点部署项目(ZDRW-ZS-2016-5)和中国科学院大连化学物理研究所科研创新基金项目(DICP ZZBS201614)资助.

Wet air oxidation regeneration process of flake activated carbon and the mechanism

  • Fund Project: Supported by Major Science and Technology Projects of Shandong Province (2015ZDXX0402B01),the Key Programs of the Chinese Academy of Sciences (ZDRW-ZS-2016-5) and DICP (DICP ZZBS201614).
  • 摘要: 采用湿式氧化装置再生吸附间甲酚饱和片状活性炭,采用标准再吸附实验法测定饱和活性炭的再生效率,确定湿式氧化再生的最佳反应时间和温度.通过总有机碳测定仪和高效液相色谱测得再生过程中总有机碳和间甲酚浓度变化,其中间甲酚浓度由脱附过程和降解过程综合影响.通过高效液相色谱和气相色谱-质谱联用确定活性炭再生过程产物包括:间甲酚降解产物乙酸、丙烯酸以及部分稳定的大分子物质,其中乙酸浓度变化是导致总有机碳变化的主要因素.通过氮气吸附脱附测试可知,再生过程中活性炭表面有部分塌陷.通过程序升温脱附-质谱联用技术得出经过再生处理的活性炭表面氧化官能团的数量有显著增加,其中以羧酸酐类和内酯的增加最为显著,表明再生过程中活性炭表面部分被氧化.通过溶液分析以及表征结果,推测再生过程的反应机理.
  • 加载中
  • [1] HENAM S D, THIYAM D S, NONGMAITHEM R S. Degradation and mechanism of m-cresol by silver nanoparticles synthesized using night jasmine (nyctanthes arbor-tristis) extracts through ultrasonic-assisted approach[J]. Environmental Engineering Science, 2017, 34(6):433-442.
    [2] CHEN D, LIU F, ZONG L, et al. Integrated adsorptive technique for efficient recovery of m-cresol and m-toluidine from actual acidic and salty wastewater[J]. J Hazard Mater, 2016, 312:192-199.
    [3] 孙文静, 王亚旻, 卫皇曌, 等. Fe-MCM-41催化臭氧氧化间甲酚废水[J]. 环境科学, 2015, 36(4):1345-1351.

    SUN W J, WANG Y M, WEI H Z, et al. Degradation of m-cresol with Fe-MCM-41 in catalytic ozonation[J]. Environmental Science, 2015, 36(04):1345-1351(in Chinese).

    [4] BENHAMED I, BARTHE L, KESSAS R, et al. Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation[J]. Applied Catalysis B:Environmental, 2016, 187:228-237.
    [5] KARABACAKOGLU B, SAVLAK O. Electrochemical regeneration of Cr(VI) saturated granular and powder activated carbon:comparison of regeneration efficiency[J]. Industrial & Engineering Chemistry Research, 2014, 53(33):13171-13179.
    [6] 吉中伟. 几种活性炭再生技术的比较[J]. 科学技术创新, 2017(36):195-196. JI Z W. Comparison of several kinds of activated carbon regeneration technology[J]. Scientific and Technological Innovation, 2017

    (36):195-196(in Chinese).

    [7] LEDESMA B, ROMáN S, ÁLVAREZ-MURILLO A, et al. Cyclic adsorption/thermal regeneration of activated carbons[J]. Journalof Analytical and Applied Pyrolysis, 2014, 106:112-117.
    [8] SALVADOR F, MARTIN-SANCHEZ N, SANCHEZ-HERNANDEZ R, et al. Regeneration of carbonaceous adsorbents. Part I:Thermal regeneration[J]. Microporous and Mesoporous Materials, 2015, 202:259-276.
    [9] BENHAMED I, BARTHE L, KESSAS R, et al. Improvement of (transition metal-modified) activated carbon regeneration by H2O2-promoted catalytic wet air oxidation[J]. Environmental Technology, 2018,39(21):2761-2770
    [10] FAROOQ M, ALMUSTAPHA M N, IMRAN M, et al. In-situ regeneration of activated carbon with electric potential swing desorption (EPSD) for the H2S removal from biogas[J]. Bioresource Technology, 2018, 249:125-131.
    [11] FOO K Y, HAMEED B H. A cost effective method for regeneration of durian shell and jackfruit peel activated carbons by microwave irradiation[J]. Chemical Engineering Journal, 2012, 193-194:404-409.
    [12] WEI M-C, WANG K-S, LIN I C, et al. Rapid regeneration of sulfanilic acid-sorbed activated carbon by microwave with persulfate[J]. Chemical Engineering Journal, 2012, 193-194:366-371.
    [13] HEIDARI A, LOTFOLLAHI M N, BASERI H. Regeneration of activated carbon loaded with cyclohexane using supercritical carbon dioxide:experimental results and modeling[J]. Chemical Engineering & Technology, 2013, 36(2):315-322.
    [14] SANCHEZ-MONTERO M J, PELAZ J, MARTIN-SANCHEZ N, et al. Supercritical regeneration of an activated carbon fiber exhausted with phenol[J]. Applied Sciences-Basel, 2018, 8(1):1-14.
    [15] LEDESMA B, ROMáN S, SABIO E, et al. Improvement of spent activated carbon regeneration by wet oxidation processes[J]. The Journal of Supercritical Fluids, 2015, 104:94-103.
    [16] SHENDE R V, MAHAJANI V V. Wet oxidative regeneration of activated carbon loaded with reactive dye[J]. Waste Management, 2002, 22(1):73-83.
    [17] WEDEKING C A, SNOEYINK V L, LARSON R A, et al. Wet air regeneration of pac-comparison of carbons with different surface oxygen characteristics[J]. Water Research, 1987, 21(8):929-937.
    [18] 樊强. 湿式氧化法再生粉末活性炭的研究[D]. 天津:天津大学, 2014. FAN Q, Study on regeneration of powdered activated carbon using wet oxidation[D]. Tianjin:Tianjin University, 2014(in Chinese).
    [19] 陈玲, 熊飞, 张颖, 等. 非均相催化湿式氧化法再生活性炭实验[J]. 环境科学, 2003, 24(4):150-153.

    CHEN L, XIONG F, ZHANG Y. et al. Study on activated carbon regeneration by heterogeneous catalytic wet oxidation[J]. Environmental Science, 2003, 24(04):150-153(in Chinese).

    [20] YU H, TIAN W, GU H, et al. Adsorption performance for ammonia nitrogen and thermal regeneration of a coal cinder-zeolite honeycombed sorbent[J]. Chinese Journal of Environmental Engineering, 2016, 10(7):3477-3482.
    [21] XIAO L. Adsorption of m-cresol from aqueous solutions by beta-cyclodextrin polymer[J]. Fresenius Environmental Bulletin, 2014, 23(7):1485-1489.
    [22] WANG Y, WEI H, ZHAO Y, et al. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst[J]. Journal of Hazardous Materials, 2017, 326:36-46.
    [23] LI N, MA X, ZHA Q, et al. Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry[J]. Carbon, 2011, 49(15):5002-5013.
    [24] 宋剑飞. 活性炭吸附VOCs及其构效关系研究[D]. 长沙:中南大学, 2014. SONG J F. Study on adsorption VOCs by activated carbon and the structure-function relationship[D]. Changsha:Central South University, 2014(in Chinese).
    [25] YU Y, WEI H Z, YU L, et al. Surface modification of sewage sludge derived carbonaceous catalyst for m-cresol catalytic wet peroxide oxidation and degradation mechanism[J]. Rsc Advances, 2015, 5(52):41867-41876.
  • 加载中
计量
  • 文章访问数:  1406
  • HTML全文浏览数:  1396
  • PDF下载数:  91
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-28
  • 刊出日期:  2019-03-15
吴慧玲, 卫皇曌, 孙文静, 靳承煜, 孙承林. 湿式氧化再生饱和片状活性炭及机理研究[J]. 环境化学, 2019, 38(3): 572-580. doi: 10.7524/j.issn.0254-6108.2018042805
引用本文: 吴慧玲, 卫皇曌, 孙文静, 靳承煜, 孙承林. 湿式氧化再生饱和片状活性炭及机理研究[J]. 环境化学, 2019, 38(3): 572-580. doi: 10.7524/j.issn.0254-6108.2018042805
WU Huiling, WEI Huangzhao, SUN Wenjing, JIN Chengyu, SUN Chenglin. Wet air oxidation regeneration process of flake activated carbon and the mechanism[J]. Environmental Chemistry, 2019, 38(3): 572-580. doi: 10.7524/j.issn.0254-6108.2018042805
Citation: WU Huiling, WEI Huangzhao, SUN Wenjing, JIN Chengyu, SUN Chenglin. Wet air oxidation regeneration process of flake activated carbon and the mechanism[J]. Environmental Chemistry, 2019, 38(3): 572-580. doi: 10.7524/j.issn.0254-6108.2018042805

湿式氧化再生饱和片状活性炭及机理研究

  • 1.  中国科学院大连化学物理研究所, 大连, 116023;
  • 2.  中国科学院大学, 北京, 100049
基金项目:

山东省科技重大专项(2015ZDXX0402B01),中国科学院院重点部署项目(ZDRW-ZS-2016-5)和中国科学院大连化学物理研究所科研创新基金项目(DICP ZZBS201614)资助.

摘要: 采用湿式氧化装置再生吸附间甲酚饱和片状活性炭,采用标准再吸附实验法测定饱和活性炭的再生效率,确定湿式氧化再生的最佳反应时间和温度.通过总有机碳测定仪和高效液相色谱测得再生过程中总有机碳和间甲酚浓度变化,其中间甲酚浓度由脱附过程和降解过程综合影响.通过高效液相色谱和气相色谱-质谱联用确定活性炭再生过程产物包括:间甲酚降解产物乙酸、丙烯酸以及部分稳定的大分子物质,其中乙酸浓度变化是导致总有机碳变化的主要因素.通过氮气吸附脱附测试可知,再生过程中活性炭表面有部分塌陷.通过程序升温脱附-质谱联用技术得出经过再生处理的活性炭表面氧化官能团的数量有显著增加,其中以羧酸酐类和内酯的增加最为显著,表明再生过程中活性炭表面部分被氧化.通过溶液分析以及表征结果,推测再生过程的反应机理.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回