AuNPs-Al2O3复合材料固相萃取天然水体中总溶解性汞

马冉冉, 王振华, 薛富民, 李锋, 李大鹏. AuNPs-Al2O3复合材料固相萃取天然水体中总溶解性汞[J]. 环境化学, 2019, 38(3): 581-588. doi: 10.7524/j.issn.0254-6108.2018042301
引用本文: 马冉冉, 王振华, 薛富民, 李锋, 李大鹏. AuNPs-Al2O3复合材料固相萃取天然水体中总溶解性汞[J]. 环境化学, 2019, 38(3): 581-588. doi: 10.7524/j.issn.0254-6108.2018042301
MA Ranran, WANG Zhenhua, XUE Fumin, LI Feng, LI Dapeng. Solid phase extraction based on gold nanoparticle-aluminum oxide for the enrichment of ultratrace total mercury in nature water[J]. Environmental Chemistry, 2019, 38(3): 581-588. doi: 10.7524/j.issn.0254-6108.2018042301
Citation: MA Ranran, WANG Zhenhua, XUE Fumin, LI Feng, LI Dapeng. Solid phase extraction based on gold nanoparticle-aluminum oxide for the enrichment of ultratrace total mercury in nature water[J]. Environmental Chemistry, 2019, 38(3): 581-588. doi: 10.7524/j.issn.0254-6108.2018042301

AuNPs-Al2O3复合材料固相萃取天然水体中总溶解性汞

  • 基金项目:

    国家自然科学基金(21277084),山东省重点研发计划(2016GSF117015)和山东"双一流"计划(SYT2017XTTD04)资助.

Solid phase extraction based on gold nanoparticle-aluminum oxide for the enrichment of ultratrace total mercury in nature water

  • Fund Project: Supported by the Projects of National Natural Science Foundation of China (21277084), Key Research and Development Plan of Shandong Province, China (2016GSF117015) and Shandong "Double Tops" Program (SYT2017XTTD04).
  • 摘要: 纳米金-氧化铝(AuNPs-Al2O3)复合材料作为固相萃取材料用于富集环境水体中总溶解性汞.纳米金负载于氧化铝表面防止其团聚,同时有利于吸附剂分离.纳米金-氧化铝复合物可以吸附无机汞及有机汞,并将其转化为元素汞(Hg0),经HCl洗脱后使用原子荧光测定总汞含量.考察了影响总汞富集与测定的因素,包括待测样品pH、洗脱液种类和用量、萃取时间以及干扰离子等.在最佳的萃取条件下,水中总汞的检出限为0.3 ng·L-1,富集倍数为196(400 mL样品).线性范围为1.0-40 ng·L-1,相关系数为0.998.结果表明,纳米金-氧化铝纳米复合材料具有成本低、效率高及稳定性高的特点,可以应用于环境水体中总溶解性汞的日常测定.
  • 加载中
  • [1] ZHU S Q,CHEN B B,HE M,et al. Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction[J]. Talanta, 2017, 171:213-219.
    [2] 朱金山,高润霞,王定勇,等. 稻田水体中汞的非生物甲基化研究[J]. 环境化学, 2017, 36(9):1997-2004.

    ZHU J S, GAO R X, WANG D Y, et al. Abiotic methylation of mercury in rice paddy with biogas slurry irrigation[J]. Environmental Chemistry, 2017, 36(9):1997-2004(in Chinese).

    [3] LEOPOLD K,FOULKES M,WORSFOLD P. Methods for the determination and speciation of mercury in natural waters-A review[J]. Analytica Chimica Acta, 2010, 663(2):127-138.
    [4] 许秀艳,朱红霞,于建钊,等. 环境中汞化学形态分析研究进展[J]. 环境化学, 2015, 34(6):1086-1094.

    XU X Y, ZHU H X, YU J Z, et al. Research progress on chemical speciation analysis of mercury in the environment[J]. Environmental Chemistry, 2015, 34(6):1086-1094(in Chinese).

    [5] SANCHEZ-RODAS D,CORNS W T,CHEN B,et al. Atomic fluorescence spectrometry:A suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(7):933-946.
    [6] YANG F F,LI J H,LU W H,et al. Speciation analysis of mercury in water samples by dispersive liquid-liquid microextraction coupled to capillary electrophoresis[J]. Electrophoresis, 2014, 35(4):474-481.
    [7] KARA D,TEKIN N. Solid-phase extraction and spectrophotometric determination of trace amounts of mercury in natural samples[J]. Microchimica Acta, 2005, 149(3):193-198.
    [8] ZIAEI E,MEHDINIA A,JABBARI A. A novel hierarchical nanobiocomposite of graphene oxide-magnetic chitosan grafted with mercapto as a solid phase extraction sorbent for the determination of mercury ions in environmental water samples[J]. Analytica Chimica Acta, 2014, 850:49-56.
    [9] LI L,WANG Z H,ZHANG S X,et al. Directly-thiolated graphene based organic solvent-free cloud point extraction-like method for enrichment and speciation of mercury by HPLC-ICP-MS[J]. Microchemical Journal, 2017, 132:299-307.
    [10] RAHMAN G,WOLLE M M,FAHRENHOLZ T,et al. Measurement of mercury species in whole blood using speciated isotope dilution methodology integrated with microwave-enhanced solubilization and spike equilibration, headspace-solid-phase microextraction, and GC-ICP-MS analysis[J]. Analytical Chemistry, 2014, 86(12):6130-6137.
    [11] WANG Z H,XU Q Z,LI S Y,et al. Hollow fiber supported ionic liquid membrane microextraction for speciation of mercury by high-performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(3):1140-1146.
    [12] 林毅东,林郑忠,张红园,等. 巯基化纳米Fe3O4在海水痕量汞检测中的应用[J]. 环境化学, 2015, 34(8):1470-1475.

    LIN Y D, LIN Z Z, ZHANG H Y, et al. The application of thiol-functionalized nano-Fe3O4 particles to the determination of trace mercury in seawater[J]. Environmental Chemistry, 2015, 34(8):1470-1475(in Chinese).

    [13] ZHANG L N,CHANG X J,HU Z,et al. Selective solid phase extraction and preconcentration of mercury(Ⅱ) from environmental and biological samples using nanometer silica functionalized by 2,6-pyridine dicarboxylic acid[J]. Microchimica Acta, 2010, 168(1):79-85.
    [14] 王敏,汪竹青,吴根华,等. 汞离子磁性吸附剂的制备及应用[J]. 环境化学, 2016, 35(3):540-547.

    WANG M, WANG Z Q, WU G H, et al. Synthesis and application of magnetic adsorbent for mercury ions[J]. Environmental Chemistry, 2016, 35(3):540-547(in Chinese).

    [15] LO S I,CHEN P C,HUANG C C,et al. Gold nanoparticle-aluminum oxide adsorbent for efficient removal of mercury species from natural waters[J]. Environmental Science & Technology, 2012, 46(5):2724-2730.
    [16] OJEA-JIMÉNEZ I,LÓPEZ X,ARBIOL J,et al. Citrate-coated gold nanoparticles as smart scavengers for mercury(Ⅱ) removal from polluted waters[J]. ACS Nano, 2012, 6(3):2253-2260.
    [17] ZHANG W B,SUN C X,YANG X A. Magnetic solid-phase extraction combined with in situ slurry cold vapor generation atomic fluorescence spectrometry for preconcentration and determination of ultratrace mercury[J]. Analytical Methods, 2014, 6(9):2876-2882.
    [18] ZIERHUT A,LEOPOLD K,HARWARDT L,et al. Activated gold surfaces for the direct preconcentration of mercury species from natural waters[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(6):767-774.
    [19] SHIH Y C,KE C Y,YU C J,et al. Combined Tween 20-stabilized gold nanoparticles and reduced graphite oxide-Fe3O4 nanoparticle composites for rapid and efficient removal of mercury species from a complex matrix[J]. ACS Applied Materials & Interfaces, 2014, 6(20):17437-17445.
    [20] MORRIS T,SZULCZEWSKI G. A Spectroscopic ellipsometry, surface plasmon resonance, and x-ray photoelectron spectroscopy study of hg adsorption on gold surfaces[J]. Langmuir, 2002, 18(6):2260-2264.
    [21] GENIN F,ALNOT M,EHRHARDT J J. Interaction of vapours of mercury with PbS(001):A study by X-ray photoelectron spectroscopy, RHEED and X-ray absorption spectroscopy[J]. Applied Surface Science, 2001, 173(1):44-53.
    [22] MA S S,HE M,CHEN B B,et al. Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples[J]. Talanta, 2016, 146:93-99.
    [23] ES'HAGHI Z,BARDAJEE G R,AZIMI S. Magnetic dispersive micro solid-phase extraction for trace mercury pre-concentration and determination in water, hemodialysis solution and fish samples[J]. Microchemical Journal, 2016, 127:170-177.
    [24] KRAWCZYK M,STANISZ E. Silver nanoparticles as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the atomic absorption spectrometric determination of mercury in water samples[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(11):2353-2358.
    [25] ZHOU Q X,XING A,ZHAO K F. Simultaneous determination of nickel, cobalt and mercury ions in water samples by solid phase extraction using multiwalled carbon nanotubes as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography[J]. Journal of Chromatography A, 2014, 1360:76-81.
  • 加载中
计量
  • 文章访问数:  1257
  • HTML全文浏览数:  1239
  • PDF下载数:  54
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-23
  • 刊出日期:  2019-03-15
马冉冉, 王振华, 薛富民, 李锋, 李大鹏. AuNPs-Al2O3复合材料固相萃取天然水体中总溶解性汞[J]. 环境化学, 2019, 38(3): 581-588. doi: 10.7524/j.issn.0254-6108.2018042301
引用本文: 马冉冉, 王振华, 薛富民, 李锋, 李大鹏. AuNPs-Al2O3复合材料固相萃取天然水体中总溶解性汞[J]. 环境化学, 2019, 38(3): 581-588. doi: 10.7524/j.issn.0254-6108.2018042301
MA Ranran, WANG Zhenhua, XUE Fumin, LI Feng, LI Dapeng. Solid phase extraction based on gold nanoparticle-aluminum oxide for the enrichment of ultratrace total mercury in nature water[J]. Environmental Chemistry, 2019, 38(3): 581-588. doi: 10.7524/j.issn.0254-6108.2018042301
Citation: MA Ranran, WANG Zhenhua, XUE Fumin, LI Feng, LI Dapeng. Solid phase extraction based on gold nanoparticle-aluminum oxide for the enrichment of ultratrace total mercury in nature water[J]. Environmental Chemistry, 2019, 38(3): 581-588. doi: 10.7524/j.issn.0254-6108.2018042301

AuNPs-Al2O3复合材料固相萃取天然水体中总溶解性汞

  • 1.  山东农业大学食品科学与工程学院山东省高校食品加工技术与质量控制重点实验室, 泰安, 271018;
  • 2.  齐鲁工业大学(山东省科学院)山东省分析测试中心, 济南, 250014
基金项目:

国家自然科学基金(21277084),山东省重点研发计划(2016GSF117015)和山东"双一流"计划(SYT2017XTTD04)资助.

摘要: 纳米金-氧化铝(AuNPs-Al2O3)复合材料作为固相萃取材料用于富集环境水体中总溶解性汞.纳米金负载于氧化铝表面防止其团聚,同时有利于吸附剂分离.纳米金-氧化铝复合物可以吸附无机汞及有机汞,并将其转化为元素汞(Hg0),经HCl洗脱后使用原子荧光测定总汞含量.考察了影响总汞富集与测定的因素,包括待测样品pH、洗脱液种类和用量、萃取时间以及干扰离子等.在最佳的萃取条件下,水中总汞的检出限为0.3 ng·L-1,富集倍数为196(400 mL样品).线性范围为1.0-40 ng·L-1,相关系数为0.998.结果表明,纳米金-氧化铝纳米复合材料具有成本低、效率高及稳定性高的特点,可以应用于环境水体中总溶解性汞的日常测定.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回