畜禽抗生素对植物的生态毒理效应综述

李淑英, 徐道青, 刘小玲, 陈敏, 王维, 阚画春, 郑曙锋, 孙霞. 畜禽抗生素对植物的生态毒理效应综述[J]. 生态毒理学报, 2023, 18(4): 188-206. doi: 10.7524/AJE.1673-5897.20220930001
引用本文: 李淑英, 徐道青, 刘小玲, 陈敏, 王维, 阚画春, 郑曙锋, 孙霞. 畜禽抗生素对植物的生态毒理效应综述[J]. 生态毒理学报, 2023, 18(4): 188-206. doi: 10.7524/AJE.1673-5897.20220930001
Li Shuying, Xu Daoqing, Liu Xiaoling, Chen Min, Wang Wei, Kan Huachun, Zheng Shufeng, Sun Xia. Review on Ecotoxicological Effects of Livestock and Poultry Antibiotics on Plants[J]. Asian journal of ecotoxicology, 2023, 18(4): 188-206. doi: 10.7524/AJE.1673-5897.20220930001
Citation: Li Shuying, Xu Daoqing, Liu Xiaoling, Chen Min, Wang Wei, Kan Huachun, Zheng Shufeng, Sun Xia. Review on Ecotoxicological Effects of Livestock and Poultry Antibiotics on Plants[J]. Asian journal of ecotoxicology, 2023, 18(4): 188-206. doi: 10.7524/AJE.1673-5897.20220930001

畜禽抗生素对植物的生态毒理效应综述

    作者简介: 李淑英(1968-),女,硕士,副研究员,研究方向为农田杂草发生规律与防治技术,E-mail:lishuyingnew@aliyun.com
    通讯作者: 徐道青,E-mail:41516168@qq.com; 
  • 基金项目:

    安徽省科技重大专项“畜禽粪污资源化生产作物专用配方有机肥及产业化”(202003a06020003);安徽省重点研发计划项目“利用养猪场粪污生产作物专用有机肥关键技术研究及示范应用”(202104a06020020);安徽省农业科学院团队项目(2022YL018)

  • 中图分类号: X171.5

Review on Ecotoxicological Effects of Livestock and Poultry Antibiotics on Plants

    Corresponding author: Xu Daoqing, 41516168@qq.com
  • Fund Project:
  • 摘要: 随着畜禽规模化养殖的发展,畜禽抗生素用量不断增加,且随着畜禽粪便扩散到土壤、水体中;植物吸收、积累并转化抗生素,从而对植物生长和生理代谢产生影响。本文综述了畜禽抗生素应用及污染现状,详述了近年来四环素类、磺胺类和喹诺酮类等畜禽抗生素对大田作物、蔬菜果树、湿地植物、农田杂草、水生植物及藻类的种子萌发、根、叶的形态和生理代谢的生态毒理效应的研究进展,着重综述了畜禽抗生素对这些植物光合作用和抗氧化系统的生态毒理效应的研究进展。以期为污水的植物修复、粮食蔬菜的生物安全以及生态环境安全提供科学依据。
  • 加载中
  • Kumar R R, Lee J T, Cho J Y. Fate, occurrence, and toxicity of veterinary antibiotics in environment[J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(6):701-709
    周启星, 罗义, 王美娥. 抗生素的环境残留、生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3):243-251

    Zhou Q X, Luo Y, Wang M E. Environmental residues and ecotoxicity of antibiotics and their resistance gene pollution:A review[J]. Asian Journal of Ecotoxicology, 2007, 2(3):243-251(in Chinese)

    Sriram A, Kalanxhi E, Kapoor G, et al. State of the world's antibiotics 2021:A global analysis of antimicrobial resistance and its drivers[R]. Washington DC:Center for Disease Dynamics, Economics & Policy, 2021
    中华人民共和国农业农村部. 2020年中国兽用抗菌药使用情况报告[R]. 北京:中华人民共和国农业农村部, 2020
    孙刚, 袁守军, 计峰, 等. 畜禽粪便中抗生素残留危害及其研究进展[J]. 环境与健康杂志, 2009, 26(3):277-279

    Sun G, Yuan S J, Ji F, et al. Environmental impact of antibiotics contamination from livestock and poultry dejecta:A review of recent researches[J]. Journal of Environment and Health, 2009, 26(3):277-279(in Chinese)

    Awad Y M, Kim S C, Abd El-Azeem S A M, et al. Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility[J]. Environmental Earth Sciences, 2014, 71(3):1433-1440
    Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. Current Opinion in Microbiology, 2011, 14(3):236-243
    刘伟, 王慧, 陈小军, 等. 抗生素在环境中降解的研究进展[J]. 动物医学进展, 2009, 30(3):89-94

    Liu W, Wang H, Chen X J, et al. Progress on degradation of antibiotics in environment[J]. Progress in Veterinary Medicine, 2009, 30(3):89-94(in Chinese)

    Baguer A J, Jensen J, Krogh P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna[J]. Chemosphere, 2000, 40(7):751-757
    Costanzo S D, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment[J]. Marine Pollution Bulletin, 2005, 51(1-4):218-223
    Kotzerke A, Sharma S, Schauss K, et al. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure[J]. Environmental Pollution, 2008, 153(2):315-322
    Kotzerke A, Hammesfahr U, Kleineidam K, et al. Influence of difloxacin-contaminated manure on microbial community structure and function in soils[J]. Biology and Fertility of Soils, 2011, 47(2):177-186
    Liu F, Ying G G, Tao R, et al. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities[J]. Environmental Pollution, 2009, 157(5):1636-1642
    Underwood J C, Harvey R W, Metge D W, et al. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment[J]. Environmental Science & Technology, 2011, 45(7):3096-3101
    Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450
    王明利. 改革开放四十年我国畜牧业发展:成就、经验及未来趋势[J]. 农业经济问题, 2018, 39(8):60-70

    Wang M L. China's livestock industry development:Achievements, experiences and future trends[J]. Issues in Agricultural Economy, 2018, 39(8):60-70(in Chinese)

    张慧敏, 章明奎, 顾国平. 浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J]. 生态与农村环境学报, 2008, 24(3):69-73

    Zhang H M, Zhang M K, Gu G P. Residues of tetracyclines in livestock and poultry manures and agricultural soils from North Zhejiang Province[J]. Journal of Ecology and Rural Environment, 2008, 24(3):69-73(in Chinese)

    吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6):1168-1176

    Wu H W, Sun X Q, Liang B W, et al. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization[J]. Journal of Agro-Environment Science, 2020, 39(6):1168-1176(in Chinese)

    Pufal G, Memmert J, Leonhardt S D, et al. Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels[J]. Environmental Pollution, 2019, 245:531-544
    Yang Q X, Zhang H, Guo Y H, et al. Influence of chicken manure fertilization on antibiotic-resistant bacteria in soil and the endophytic bacteria of pakchoi[J]. International Journal of Environmental Research and Public Health, 2016, 13(7):662
    王冰, 孙成, 胡冠九. 环境中抗生素残留潜在风险及其研究进展[J]. 环境科学与技术, 2007, 30(3):108-111

    , 121 Wang B, Sun C, Hu G J. Residue antibiotics in environment:Potential risks and relevant studies[J]. Environmental Science & Technology, 2007, 30(3):108-111, 121(in Chinese)

    Dewey C, Cox B, Straw B, et al. Use of antimicrobials in swine feeds in the United States[J]. Journal of Swine Health and Production, 1999, 7:19-25
    Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils-A review[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2):145-167
    Feinman S E, Matheson Ⅲ J C. Draft environmental impact statement subtherapeutic antibacterial agents in animal feeds[R]. Rockville, MD, USA:Bureau of Veterinary Medicine, Food and Drug Administration, 1978
    Lamshöft M, Sukul P, Zühlke S, et al. Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs[J]. Analytical and Bioanalytical Chemistry, 2007, 388(8):1733-1745
    Grote M, Vockel A, Schwarze D, et al. Fate of antibiotics in food chain and environment originating from pig fattening[J]. Fresenius Environmental Bulletin, 2004, 13:1214-1216
    Figueroa R A, Leonard A, MacKay A A. Modeling tetracycline antibiotic sorption to clays[J]. Environmental Science & Technology, 2004, 38(2):476-483
    Rabølle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J]. Chemosphere, 2000, 40(7):715-722
    Huang C H, Renew J, Smeby K L, et al. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis[J]. Journal of Contemporary Water Research & Education, 2001, 120:4
    Zhang J Q, Dong Y H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China[J]. Journal of Hazardous Materials, 2008, 151(2-3):833-839
    McEwen S A, Fedorka-Cray P J. Antimicrobial use and resistance in animals[J]. Clinical Infectious Diseases, 2002, 34(Supplement_3):S93-S106
    Kumar K, Gupta S C, Baidoo S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure[J]. Journal of Environmental Quality, 2005, 34(6):2082-2085
    Zhou L J, Ying G G, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. The Science of the Total Environment, 2013, 444:183-195
    Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000:A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6):1202-1211
    Awad Y M, Lee S S, Kim S C, et al. Novel approaches to monitoring and remediation of veterinary antibiotics in soil and water:A review[J]. Korean Journal of Environmental Agriculture, 2010, 29(4):315-327
    张浩, 罗义, 周启星. 四环素类抗生素生态毒性研究进展[J]. 农业环境科学学报, 2008, 27(2):407-413

    Zhang H, Luo Y, Zhou Q X. Research advancement of eco-toxicity of tetracycline antibiotics[J]. Journal of Agro-Environment Science, 2008, 27(2):407-413(in Chinese)

    章明奎, 王丽平, 郑顺安. 两种外源抗生素在农业土壤中的吸附与迁移特性[J]. 生态学报, 2008, 28(2):761-766

    Zhang M K, Wang L P, Zheng S A. Adsorption and transport characteristics of two exterior-source antibiotics in some agricultural soils[J]. Acta Ecologica Sinica, 2008, 28(2):761-766(in Chinese)

    刘新程, 董元华, 王辉. 江苏省集约化养殖畜禽排泄物中四环素类抗生素残留调查[J]. 农业环境科学学报, 2008, 27(3):1177-1182

    Liu X C, Dong Y H, Wang H. Residues of tetracyclines in animal manure from intensive farm in Jiangsu Province[J]. Journal of Agro-Environment Science, 2008, 27(3):1177-1182(in Chinese)

    National Research Council. The effects on human health of subtherapeutic use of antimicrobials in animal feeds[R]. Washington DC:National Academy of Sciences, 1980
    Wang R, Feng F, Chai Y F, et al. Screening and quantitation of residual antibiotics in two different swine wastewater treatment systems during warm and cold seasons[J]. Science of the Total Environment, 2019, 660:1542-1554
    Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 2010, 408(5):1069-1075
    胡献刚, 罗义, 周启星, 等. 固相萃取-高效液相色谱法测定畜牧粪便中13种抗生素药物残留[J]. 分析化学, 2008, 36(9):1162-1166

    Hu X G, Luo Y, Zhou Q X, et al. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2008, 36(9):1162-1166(in Chinese)

    Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China[J]. Environmental Pollution, 2010, 158(9):2992-2998
    Li Y W, Wu X L, Mo C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, Southern China[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13):7268-7276
    Christian T, Schneider R J, Färber H A, et al. Determination of antibiotic residues in manure, soil, and surface waters[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1):36-44
    Matsui Y, Ozu T, Inoue T, et al. Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms[J]. Desalination, 2008, 226(1-3):215-221
    Batt A L, Snow D D, Aga D S. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA[J]. Chemosphere, 2006, 64(11):1963-1971
    Campagnolo E R, Johnson K R, Karpati A, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations[J]. Science of the Total Environment, 2002, 299(1-3):89-95
    Chen H Y, Zheng W F, Shen X M, et al. Occurrence, distribution, and ecological risk assessment of antibiotics in different environmental media in Anqing, Anhui Province, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(15):8112
    Jones A D, Bruland G L, Agrawal S G, et al. Factors influencing the sorption of oxytetracycline to soils[J]. Environmental Toxicology and Chemistry, 2005, 24(4):761-770
    Loke M L, Tjørnelund J, Halling-Sørensen B. Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure[J]. Chemosphere, 2002, 48(3):351-361
    Karci A, Balcioǧlu I A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey[J]. The Science of the Total Environment, 2009, 407(16):4652-4664
    Gavalchin J, Katz S E. The persistence of fecal-borne antibiotics in soil[J]. Journal of AOAC International, 1994, 77(2):481-485
    Vasudevan D, Bruland G L, Torrance B S, et al. pH-dependent ciprofloxacin sorption to soils:Interaction mechanisms and soil factors influencing sorption[J]. Geoderma, 2009, 151(3-4):68-76
    Li X W, Xie Y F, Li L F, et al. Using robust Bayesian network to estimate the residuals of fluoroquinolone antibiotic in soil[J]. Environmental Science and Pollution Research International, 2015, 22(22):17540-17549
    Li X W, Xie Y F, Li C L, et al. Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China[J]. The Science of the Total Environment, 2014, 468-469:258-264
    Li X W, Xie Y F, Wang J F, et al. Influence of planting patterns on fluoroquinolone residues in the soil of an intensive vegetable cultivation area in Northern China[J]. Science of the Total Environment, 2013, 458-460:63-69
    Xie Y F, Li X W, Wang J F, et al. Spatial estimation of antibiotic residues in surface soils in a typical intensive vegetable cultivation area in China[J]. The Science of the Total Environment, 2012, 430:126-131
    Li C, Chen J Y, Wang J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. The Science of the Total Environment, 2015, 521-522:101-107
    Lunestad B T, Goksøyr J. Reduction in the antibacterial effect of oxy-tetracycline in sea water by complex formation with magnesium and calcium[J]. Diseases of Aquatic Organisms, 1990, 9:67-72
    Boxall A B, Blackwell P, Cavallo R, et al. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131(1-2):19-28
    Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5):1827-1833
    Hamscher G, Sczesny S, Höper H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. Analytical Chemistry, 2002, 74(7):1509-1518
    Li J J, Xin Z H, Zhang Y Z, et al. Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil[J]. Applied Soil Ecology, 2017, 121:193-200
    Sicbaldi F, Sacchi G A, Trevisan M, et al. Root uptake and xylem translocation of pesticides from different chemical classes[J]. Pesticide Science, 1997, 50(2):111-119
    Miller E L, Nason S L, Karthikeyan K G, et al. Root uptake of pharmaceuticals and personal care product ingredients[J]. Environmental Science & Technology, 2016, 50(2):525-541
    Goldstein M, Shenker M, Chefetz B. Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables[J]. Environmental Science & Technology, 2014, 48(10):5593-5600
    Riemenschneider C, Seiwert B, Moeder M, et al. Extensive transformation of the pharmaceutical carbamazepine following uptake into intact tomato plants[J]. Environmental Science & Technology, 2017, 51(11):6100-6109
    Schröder P, Scheer C E, Diekmann F, et al. How plants cope with foreign compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare)[J]. Environmental Science and Pollution Research International, 2007, 14(2):114-122
    Bartha B, Huber C, Schröder P. Uptake and metabolism of diclofenac in Typha latifolia-How plants cope with human pharmaceutical pollution[J]. Plant Science:An International Journal of Experimental Plant Biology, 2014, 227:12-20
    Li X D, Yu H X, Xu S S, et al. Uptake of three sulfonamides from contaminated soil by pakchoi cabbage[J]. Ecotoxicology and Environmental Safety, 2013, 92:297-302
    Dolliver H, Kumar K, Gupta S. Sulfamethazine uptake by plants from manure-amended soil[J]. Journal of Environmental Quality, 2007, 36(4):1224-1230
    Lv Y, Li Y Y, Liu X H, et al. The tolerance mechanism and accumulation characteristics of Phragmites australis to sulfamethoxazole and ofloxacin[J]. Chemosphere, 2020, 253:126695
    Bassil R J, Bashour I I, Sleiman F T, et al. Antibiotic uptake by plants from manure-amended soils[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48(7):570-574
    Sallach J B, Zhang Y P, Hodges L, et al. Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation[J]. Environmental Pollution, 2015, 197:269-277
    Hurtado C, Domínguez C, Pérez-Babace L, et al. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions[J]. Journal of Hazardous Materials, 2016, 305:139-148
    Zhao F K, Yang L, Chen L D, et al. Bioaccumulation of antibiotics in crops under long-term manure application:Occurrence, biomass response and human exposure[J]. Chemosphere, 2019, 219:882-895
    Pan M, Chu L M. Transfer of antibiotics from wastewater or animal manure to soil and edible crops[J]. Environmental Pollution, 2017, 231:829-836
    Michelini L, Reichel R, Werner W, et al. Sulfadiazine uptake and effects on Salix fragilis L. and Zea mays L. plants[J]. Water, Air, & Soil Pollution, 2012, 223(8):5243-5257
    Liu L, Liu Y H, Liu C X, et al. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions[J]. Ecological Engineering, 2013, 53:138-143
    Christou A, Antoniou C, Christodoulou C, et al. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants[J]. The Science of the Total Environment, 2016, 557-558:652-664
    Liu X H, Lv Y, Xu K, et al. Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes[J]. Chemosphere, 2018, 201:137-143
    Chen H R, Rairat T, Loh S H, et al. Assessment of veterinary drugs in plants using pharmacokinetic approaches:The absorption, distribution and elimination of tetracycline and sulfamethoxazole in ephemeral vegetables[J]. PLoS One, 2017, 12(8):e0183087
    Lv Y, Xu J M, Xu K, et al. Accumulation characteristics and biological response of ginger to sulfamethoxazole and ofloxacin[J]. Environmental Pollution, 2020, 262:114203
    Mohammad M, Itoh K, Suyama K, et al. Recovery of Lemna sp. after exposure to sulfonylurea herbicides[J]. Bulletin of Environmental Contamination and Toxicology, 2006, 76(2):256-263
    Marchiol L, Fellet G, Perosa D, et al. Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes:A field experience[J]. Plant Physiology and Biochemistry, 2007, 45(5):379-387
    Minden V, Deloy A, Volkert A M, et al. Antibiotics impact plant traits, even at small concentrations[J]. AoB Plants, 2017, 9(2):plx010
    Hillis D G, Fletcher J, Solomon K R, et al. Effects of ten antibiotics on seed germination and root elongation in three plant species[J]. Archives of Environmental Contamination and Toxicology, 2011, 60(2):220-232
    Yang Q X, Zhang J, Zhang W Y, et al. Influence of tetracycline exposure on the growth of wheat seedlings and the rhizosphere microbial community structure in hydroponic culture[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45(3):190-197
    Ziolkowska A, Piotrowicz-Cieslak A I, Margas M, et al. Accumulation of tetracycline, oxytetracycline and chlortetracycline in pea (Pisum sativum L.)[J]. Fresenius Environmental Bulletin, 2015, 24:1386-1391
    Riaz L, Mahmood T, Coyne M S, et al. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics[J]. Chemosphere, 2017, 177:250-257
    Bellino A, Lofrano G, Carotenuto M, et al. Antibiotic effects on seed germination and root development of tomato (Solanum lycopersicum L.)[J]. Ecotoxicology and Environmental Safety, 2018, 148:135-141
    Sartorius M, Riccio A, Cermola M, et al. Sulphadimethoxine inhibits Phaseolus vulgaris root growth and development of N-fixing nodules[J]. Chemosphere, 2009, 76(3):306-312
    Gomes M P, Richardi V S, Bicalho E M, et al. Effects of ciprofloxacin and Roundup on seed germination and root development of maize[J]. The Science of the Total Environment, 2019, 651(Pt 2):2671-2678
    Xu Y G, Yu W T, Ma Q, et al. Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings[J]. Ecotoxicology and Environmental Safety, 2017, 142:250-256
    Xie X J, Zhou Q X, He Z C, et al. Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.)[J]. Environmental Toxicology and Chemistry, 2010, 29(4):922-928
    Xie X J, Zhou Q X, Lin D S, et al. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.)[J]. Environmental Science and Pollution Research International, 2011, 18(4):566-575
    魏瑞成, 邵明诚, 陈明, 等. 金霉素和4-差向金霉素对油菜生长的影响及其在幼苗体内的积累[J]. 农业环境科学学报, 2012, 31(7):1289-1295

    Wei R C, Shao M C, Chen M, et al. Effects of chlortetracycline and 4-epi-chlortetracycline on the growth of rape and its accumulation in seedling[J]. Journal of Agro-Environment Science, 2012, 31(7):1289-1295(in Chinese)

    Wang J M, Lin H, Sun W C, et al. Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable-soil systems following manure application[J]. Journal of Hazardous Materials, 2016, 304:49-57
    Mukhtar A, Manzoor M, Gul I, et al. Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments[J]. Chemosphere, 2020, 258:127353
    An J, Zhou Q X, Sun F H, et al. Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2009, 169(1-3):751-757
    Pan M, Chu L M. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops[J]. Ecotoxicology and Environmental Safety, 2016, 126:228-237
    Taylor A G, Salanenka Y A. Seed treatments:Phytotoxicity amelioration and tracer uptake[J]. Seed Science Research, 2012, 22(S1):S86-S90
    Migliore L, Brambilla G, Casoria P, et al. Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliposida)[J]. Agriculture, Ecosystems & Environment, 1996, 60(2-3):121-128
    Migliore L. Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays)[J]. Agriculture, Ecosystems & Environment, 1995, 52(2-3):103-110
    Migliore L, Civitareale C, Cozzolino S, et al. Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants[J]. Chemosphere, 1998, 37(14-15):2957-2961
    Wen B, Liu Y, Wang P, et al. Toxic effects of chlortetracycline on maize growth, reactive oxygen species generation and the antioxidant response[J]. Journal of Environmental Sciences (China), 2012, 24(6):1099-1105
    Li Z J, Xie X Y, Zhang S Q, et al. Wheat growth and photosynthesis as affected by oxytetracycline as a soil contaminant[J]. Pedosphere, 2011, 21(2):244-250
    Han T, Wang B S, Wu Z N, et al. Providing a view for toxicity mechanism of tetracycline by analysis of the connections between metabolites and biologic endpoints of wheat[J]. Ecotoxicology and Environmental Safety, 2021, 212:111998
    Han T, Liang Y P, Wu Z N, et al. Effects of tetracycline on growth, oxidative stress response, and metabolite pattern of ryegrass[J]. Journal of Hazardous Materials, 2019, 380:120885
    Xiong J Q, Kurade M B, Jeon B H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium[J]. Environmental Pollution, 2017, 226:486-493
    Sharma N, Arrigoni G, Ebinezer L B, et al. A proteomic and biochemical investigation on the effects of sulfadiazine in Arabidopsis thaliana[J]. Ecotoxicology and Environmental Safety, 2019, 178:146-158
    Michelini L, La Rocca N, Rascio N, et al. Structural and functional alterations induced by two sulfonamide antibiotics on barley plants[J]. Plant Physiology and Biochemistry, 2013, 67:55-62
    Michelini L, Meggio F, La Rocca N, et al. Accumulation and effects of sulfadimethoxine in Salix fragilis L. plants:A preliminary study to phytoremediation purposes[J]. International Journal of Phytoremediation, 2012, 14(4):388-402
    Piotrowicz-Cieślak A I, Adomas B, Nałecz-Jawecki G, et al. Phytotoxicity of sulfamethazine soil pollutant to six legume plant species[J]. Journal of Toxicology and Environmental Health Part A, 2010, 73(17-18):1220-1229
    Aristilde L, Melis A, Sposito G. Inhibition of photosynthesis by a fluoroquinolone antibiotic[J]. Environmental Science & Technology, 2010, 44(4):1444-1450
    Migliore L, Cozzolino S, Fiori M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere, 2003, 52(7):1233-1244
    Zhao C Y, Ru S G, Cui P F, et al. Multiple metabolic pathways of enrofloxacin by Lolium perenne L.:Ecotoxicity, biodegradation, and key driven genes[J]. Water Research, 2021, 202:117413
    Xu L L, Li Z H, Zhuang B Y, et al. Enrofloxacin perturbs nitrogen transformation and assimilation in rice seedlings (Oryza sativa L.)[J]. The Science of the Total Environment, 2022, 802:149900
    Zhao H M, Huang H B, Du H, et al. Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis)[J]. Journal of Hazardous Materials, 2018, 349:252-261
    Gomes M P, Bicalho E M, Smedbol É, et al. Glyphosate can decrease germination of glyphosate-resistant soybeans[J]. Journal of Agricultural and Food Chemistry, 2017, 65(11):2279-2286
    Hénault-Ethier L, Lucotte M, Moingt M, et al. Herbaceous or Salix miyabeana 'SX64' narrow buffer strips as a means to minimize glyphosate and aminomethylphosphonic acid leaching from row crop fields[J]. The Science of the Total Environment, 2017, 598:1177-1186
    Li N, Wang K, Lv Y, et al. Silicon enhanced the resistance of Chinese cabbage (Brassica rapa L. ssp. pekinensis) to ofloxacin on the growth, photosynthetic characteristics and antioxidant system[J]. Plant Physiology and Biochemistry, 2022, 175:44-57
    Wang R, Wang J, Wang J H, et al. Growth inhibiting effects of four antibiotics on cucumber, rape and Chinese cabbage[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(1):187-192
    鲍陈燕, 顾国平, 章明奎. 兽用抗生素胁迫对水芹生长及其抗生素积累的影响[J]. 土壤通报, 2016, 47(1):164-172

    Bao C Y, Gu G P, Zhang M K. Effects of veterinary antibiotics stress on growth and antibiotics accumulation of Oenanthe javanica DC[J]. Chinese Journal of Soil Science, 2016, 47(1):164-172(in Chinese)

    Yu Q X, Ahammed G J, Zhou Y H, et al. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem[J]. Scientific Reports, 2017, 7:43096
    Xie X J, Zhou Q X, Bao Q H, et al. Genotoxicity of tetracycline as an emerging pollutant on root meristem cells of wheat (Triticum aestivum L.)[J]. Environmental Toxicology, 2011, 26(4):417-423
    Tong X N, Wang X Z, He X J, et al. Effects of antibiotics on nitrogen uptake of four wetland plant species grown under hydroponic culture[J]. Environmental Science and Pollution Research International, 2019, 26(11):10621-10630
    Panja S, Sarkar D, Li K F, et al. Uptake and transformation of ciprofloxacin by vetiver grass (Chrysopogon zizanioides)[J]. International Biodeterioration & Biodegradation, 2019, 142:200-210
    Tasho R P, Shin W T, Cho J Y. Acclimatization of Pisum sativum L., grown in soil contaminated with veterinary antibiotics, an attribute of dose hormetic response of root metabolites[J]. The Science of the Total Environment, 2018, 635:364-374
    Liu X N, Lv Y, Gao S, et al. Ofloxacin induces etiolation in Welsh onion leaves[J]. Chemosphere, 2021, 267:128918
    Zhang Z H, Liu X N, Lv Y, et al. Grafting resulting in alleviating tomato plant oxidative damage caused by high levels of ofloxacin[J]. Environmental Pollution, 2021, 286:117331
    Zhu L M, Xu H T, Xiao W S, et al. Ecotoxicological effects of sulfonamide on and its removal by the submerged plant Vallisneria natans (Lour.) Hara[J]. Water Research, 2020, 170:115354
    Khan K Y, Ali B, Zhang S, et al. Effects of antibiotics stress on growth variables, ultrastructure, and metabolite pattern of Brassica rapa ssp. chinensis[J]. The Science of the Total Environment, 2021, 778:146333
    Chen J F, Xu H L, Sun Y B, et al. Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China[J]. The Science of the Total Environment, 2016, 543(Pt A):197-205
    Zhang H, Li X N, Yang Q X, et al. Plant growth, antibiotic uptake, and prevalence of antibiotic resistance in an endophytic system of pakchoi under antibiotic exposure[J]. International Journal of Environmental Research and Public Health, 2017, 14(11):1336
    Rydzyński D, Piotrowicz-Cieślak A I, Grajek H, et al. Instability of chlorophyll in yellow lupin seedlings grown in soil contaminated with ciprofloxacin and tetracycline[J]. Chemosphere, 2017, 184:62-73
    Hammad H M, Zia F, Bakhat H F, et al. Uptake and toxicological effects of pharmaceutical active compounds on maize[J]. Agriculture, Ecosystems & Environment, 2018, 258:143-148
    Pierattini E C, Francini A, Raffaelli A, et al. Morpho-physiological response of Populus alba to erythromycin:A timeline of the health status of the plant[J]. The Science of the Total Environment, 2016, 569-570:540-547
    迟荪琳, 王卫中, 徐卫红, 等. 四环素类抗生素对不同蔬菜生长的影响及其富集转运特征[J]. 环境科学, 2018, 39(2):935-943

    Chi S L, Wang W Z, Xu W H, et al. Effects of tetracycline antibiotics on growth and characteristics of enrichment and transformation in two vegetables[J]. Environmental Science, 2018, 39(2):935-943(in Chinese)

    Chen S, Zhang W, Li J Y, et al. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum)[J]. Environmental Pollution, 2020, 263(Pt A):114554
    Xiong J Q, Kurade M B, Jeon B H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris[J]. Chemical Engineering Journal, 2017, 313:1251-1257
    Wan J J, Guo P Y, Peng X F, et al. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae[J]. Journal of Hazardous Materials, 2015, 283:778-786
    Wan J J, Guo P Y, Zhang S X. Response of the cyanobacterium Microcystis flos-aquae to levofloxacin[J]. Environmental Science and Pollution Research, 2014, 21(5):3858-3865
    Migliore L, Civitareale C, Brambilla G, et al. Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L.)[J]. Agriculture, Ecosystems & Environment, 1997, 65(2):163-168
    Kurade M B, Kim J R, Govindwar S P, et al. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris:Microalgal tolerance to xenobiotic pollutants and metabolism[J]. Algal Research, 2016, 20:126-134
    Kurade M B, Xiong J Q, Govindwar S P, et al. Uptake and biodegradation of emerging contaminant sulfamethoxazole from aqueous phase using Ipomoea aquatica[J]. Chemosphere, 2019, 225:696-704
    Yan Y, Xu X G, Shi C F, et al. Ecotoxicological effects and accumulation of ciprofloxacin in Eichhornia crassipes under hydroponic conditions[J]. Environmental Science and Pollution Research International, 2019, 26(29):30348-30355
    Gomes M P, de Brito J C M, Bicalho E M, et al. Ciprofloxacin vs. temperature:Antibiotic toxicity in the free-floating liverwort Ricciocarpus natans from a climate change perspective[J]. Chemosphere, 2018, 202:410-419
    Gomes M P, Gonçalves C A, de Brito J C M, et al. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.):Implications for energy metabolism and antibiotic-uptake ability[J]. Journal of Hazardous Materials, 2017, 328:140-149
    Gomes M P, de Brito J C M, Carvalho Carneiro M M L, et al. Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin:Impacts on biofertilization[J]. Environmental Pollution, 2018, 232:293-299
    Yan Y, Chen Y, Xu X G, et al. Effects and removal of the antibiotic sulfadiazine by Eichhornia crassipes:Potential use for phytoremediation[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(2):342-347
    Ahmadabadi Z, Zarei M, Yasrebi J, et al. The effect of bio/organic fertilizers on the phytotoxicity of sulfadiazine to Echium amoenum in a calcareous soil[J]. Ecotoxicology and Environmental Safety, 2021, 208:111408
    Gao P J, Zuo Z J, Wu X B, et al. Effects of cycloheximide on photosynthetic abilities, reflectance spectra and fluorescence emission spectra in Phyllostachys edulis[J]. Trees, 2016, 30(3):719-732
    Deng C N, Zhang D Y, Pan X L. Toxic effects of erythromycin on photosystem Ⅰ and Ⅱ in Microcystis aeruginosa[J]. Photosynthetica, 2014, 52(4):574-580
    Liu B Y, Nie X P, Liu W Q, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum[J]. Ecotoxicology and Environmental Safety, 2011, 74(4):1027-1035
    Copaciu F, Opriş O, Niinemets Ü, et al. Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves[J]. Water, Air, and Soil Pollution, 2016, 227(6):196
    Opriş O, Copaciu F, Soran M L, et al. Content of carotenoids, violaxanthin and neoxanthin in leaves of Triticum aestivum exposed to persistent environmental pollutants[J]. Molecules, 2021, 26(15):4448
    Devireddy A R, Inupakutika M A, Willmon D, et al. Veterinary antibiotics influence trigonelline biosynthesis and plant growth in Arachis hypogaea L[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2017, 67(3):245-251
    Evans-Roberts K M, Mitchenall L A, Wall M K, et al. DNA gyrase is the target for the quinolone drug ciprofloxacin in Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2016, 291(7):3136-3144
    Wall M K, Mitchenall L A, Maxwell A. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(20):7821-7826
    Ahmad P, Abdel Latef A A, Hashem A, et al. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea[J]. Frontiers in Plant Science, 2016, 7:347
    Ding W, Hudson L G, Liu K J. Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes[J]. Molecular and Cellular Biochemistry, 2005, 279(1):105-112
    Pilati S, Brazzale D, Guella G, et al. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin[J]. BMC Plant Biology, 2014, 14:87
    Yin Y, Jia H X, Sun Y Y, et al. Bioaccumulation and ROS generation in liver of Carassius auratus, exposed to phenanthrene[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2007, 145(2):288-293
    Lin R Z, Wang X R, Luo Y, et al. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.)[J]. Chemosphere, 2007, 69(1):89-98
    Nimptsch J, Pflugmacher S. Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense[J]. Chemosphere, 2007, 66(4):708-714
    Scandalios J G. Oxidative stress:Molecular perception and transduction of signals triggering antioxidant gene defenses[J]. Brazilian Journal of Medical and Biological Research, 2005, 38(7):995-1014
    Song G L, Gao Y, Wu H, et al. Physiological effect of anatase TiO2 nanoparticles on Lemna minor[J]. Environmental Toxicology and Chemistry, 2012, 31(9):2147-2152
    Pejić S, Todorović A, Stojiljković V, et al. Antioxidant enzymes and lipid peroxidation in endometrium of patients with polyps, myoma, hyperplasia and adenocarcinoma[J]. Reproductive Biology and Endocrinology, 2009, 7:149
    Gao S, Ouyang C, Wang S, et al. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings[J]. Plant, Soil and Environment, 2008, 54(9):374-381
    Yong Z, Tang H R, Ya L. Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress[J]. World Journal of Agricultural Sciences, 2008, 4(4):458-462
    Nie X P, Liu B Y, Yu H J, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata[J]. Environmental Pollution, 2013, 172:23-32
    Liu Y, Guan Y T, Gao B Y, et al. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2012, 86:23-30
    Schmitt M A, Evans S D, Randall G W. Effect of liquid manure application methods on soil nitrogen and corn grain yields[J]. Journal of Production Agriculture, 1995, 8(2):186-189
  • 加载中
计量
  • 文章访问数:  1584
  • HTML全文浏览数:  1584
  • PDF下载数:  104
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-30
李淑英, 徐道青, 刘小玲, 陈敏, 王维, 阚画春, 郑曙锋, 孙霞. 畜禽抗生素对植物的生态毒理效应综述[J]. 生态毒理学报, 2023, 18(4): 188-206. doi: 10.7524/AJE.1673-5897.20220930001
引用本文: 李淑英, 徐道青, 刘小玲, 陈敏, 王维, 阚画春, 郑曙锋, 孙霞. 畜禽抗生素对植物的生态毒理效应综述[J]. 生态毒理学报, 2023, 18(4): 188-206. doi: 10.7524/AJE.1673-5897.20220930001
Li Shuying, Xu Daoqing, Liu Xiaoling, Chen Min, Wang Wei, Kan Huachun, Zheng Shufeng, Sun Xia. Review on Ecotoxicological Effects of Livestock and Poultry Antibiotics on Plants[J]. Asian journal of ecotoxicology, 2023, 18(4): 188-206. doi: 10.7524/AJE.1673-5897.20220930001
Citation: Li Shuying, Xu Daoqing, Liu Xiaoling, Chen Min, Wang Wei, Kan Huachun, Zheng Shufeng, Sun Xia. Review on Ecotoxicological Effects of Livestock and Poultry Antibiotics on Plants[J]. Asian journal of ecotoxicology, 2023, 18(4): 188-206. doi: 10.7524/AJE.1673-5897.20220930001

畜禽抗生素对植物的生态毒理效应综述

    通讯作者: 徐道青,E-mail:41516168@qq.com; 
    作者简介: 李淑英(1968-),女,硕士,副研究员,研究方向为农田杂草发生规律与防治技术,E-mail:lishuyingnew@aliyun.com
  • 安徽省农业科学院棉花研究所, 合肥 230031
基金项目:

安徽省科技重大专项“畜禽粪污资源化生产作物专用配方有机肥及产业化”(202003a06020003);安徽省重点研发计划项目“利用养猪场粪污生产作物专用有机肥关键技术研究及示范应用”(202104a06020020);安徽省农业科学院团队项目(2022YL018)

摘要: 随着畜禽规模化养殖的发展,畜禽抗生素用量不断增加,且随着畜禽粪便扩散到土壤、水体中;植物吸收、积累并转化抗生素,从而对植物生长和生理代谢产生影响。本文综述了畜禽抗生素应用及污染现状,详述了近年来四环素类、磺胺类和喹诺酮类等畜禽抗生素对大田作物、蔬菜果树、湿地植物、农田杂草、水生植物及藻类的种子萌发、根、叶的形态和生理代谢的生态毒理效应的研究进展,着重综述了畜禽抗生素对这些植物光合作用和抗氧化系统的生态毒理效应的研究进展。以期为污水的植物修复、粮食蔬菜的生物安全以及生态环境安全提供科学依据。

English Abstract

参考文献 (175)

返回顶部

目录

/

返回文章
返回