Kumar R R, Lee J T, Cho J Y. Fate, occurrence, and toxicity of veterinary antibiotics in environment[J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(6):701-709
|
周启星, 罗义, 王美娥. 抗生素的环境残留、生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3):243-251
Zhou Q X, Luo Y, Wang M E. Environmental residues and ecotoxicity of antibiotics and their resistance gene pollution:A review[J]. Asian Journal of Ecotoxicology, 2007, 2(3):243-251(in Chinese)
|
Sriram A, Kalanxhi E, Kapoor G, et al. State of the world's antibiotics 2021:A global analysis of antimicrobial resistance and its drivers[R]. Washington DC:Center for Disease Dynamics, Economics & Policy, 2021
|
中华人民共和国农业农村部. 2020年中国兽用抗菌药使用情况报告[R]. 北京:中华人民共和国农业农村部, 2020
|
孙刚, 袁守军, 计峰, 等. 畜禽粪便中抗生素残留危害及其研究进展[J]. 环境与健康杂志, 2009, 26(3):277-279
Sun G, Yuan S J, Ji F, et al. Environmental impact of antibiotics contamination from livestock and poultry dejecta:A review of recent researches[J]. Journal of Environment and Health, 2009, 26(3):277-279(in Chinese)
|
Awad Y M, Kim S C, Abd El-Azeem S A M, et al. Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility[J]. Environmental Earth Sciences, 2014, 71(3):1433-1440
|
Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. Current Opinion in Microbiology, 2011, 14(3):236-243
|
刘伟, 王慧, 陈小军, 等. 抗生素在环境中降解的研究进展[J]. 动物医学进展, 2009, 30(3):89-94
Liu W, Wang H, Chen X J, et al. Progress on degradation of antibiotics in environment[J]. Progress in Veterinary Medicine, 2009, 30(3):89-94(in Chinese)
|
Baguer A J, Jensen J, Krogh P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna[J]. Chemosphere, 2000, 40(7):751-757
|
Costanzo S D, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment[J]. Marine Pollution Bulletin, 2005, 51(1-4):218-223
|
Kotzerke A, Sharma S, Schauss K, et al. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure[J]. Environmental Pollution, 2008, 153(2):315-322
|
Kotzerke A, Hammesfahr U, Kleineidam K, et al. Influence of difloxacin-contaminated manure on microbial community structure and function in soils[J]. Biology and Fertility of Soils, 2011, 47(2):177-186
|
Liu F, Ying G G, Tao R, et al. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities[J]. Environmental Pollution, 2009, 157(5):1636-1642
|
Underwood J C, Harvey R W, Metge D W, et al. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment[J]. Environmental Science & Technology, 2011, 45(7):3096-3101
|
Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450
|
王明利. 改革开放四十年我国畜牧业发展:成就、经验及未来趋势[J]. 农业经济问题, 2018, 39(8):60-70
Wang M L. China's livestock industry development:Achievements, experiences and future trends[J]. Issues in Agricultural Economy, 2018, 39(8):60-70(in Chinese)
|
张慧敏, 章明奎, 顾国平. 浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J]. 生态与农村环境学报, 2008, 24(3):69-73
Zhang H M, Zhang M K, Gu G P. Residues of tetracyclines in livestock and poultry manures and agricultural soils from North Zhejiang Province[J]. Journal of Ecology and Rural Environment, 2008, 24(3):69-73(in Chinese)
|
吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6):1168-1176
Wu H W, Sun X Q, Liang B W, et al. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization[J]. Journal of Agro-Environment Science, 2020, 39(6):1168-1176(in Chinese)
|
Pufal G, Memmert J, Leonhardt S D, et al. Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels[J]. Environmental Pollution, 2019, 245:531-544
|
Yang Q X, Zhang H, Guo Y H, et al. Influence of chicken manure fertilization on antibiotic-resistant bacteria in soil and the endophytic bacteria of pakchoi[J]. International Journal of Environmental Research and Public Health, 2016, 13(7):662
|
王冰, 孙成, 胡冠九. 环境中抗生素残留潜在风险及其研究进展[J]. 环境科学与技术, 2007, 30(3):108-111
, 121 Wang B, Sun C, Hu G J. Residue antibiotics in environment:Potential risks and relevant studies[J]. Environmental Science & Technology, 2007, 30(3):108-111, 121(in Chinese)
|
Dewey C, Cox B, Straw B, et al. Use of antimicrobials in swine feeds in the United States[J]. Journal of Swine Health and Production, 1999, 7:19-25
|
Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils-A review[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2):145-167
|
Feinman S E, Matheson Ⅲ J C. Draft environmental impact statement subtherapeutic antibacterial agents in animal feeds[R]. Rockville, MD, USA:Bureau of Veterinary Medicine, Food and Drug Administration, 1978
|
Lamshöft M, Sukul P, Zühlke S, et al. Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs[J]. Analytical and Bioanalytical Chemistry, 2007, 388(8):1733-1745
|
Grote M, Vockel A, Schwarze D, et al. Fate of antibiotics in food chain and environment originating from pig fattening[J]. Fresenius Environmental Bulletin, 2004, 13:1214-1216
|
Figueroa R A, Leonard A, MacKay A A. Modeling tetracycline antibiotic sorption to clays[J]. Environmental Science & Technology, 2004, 38(2):476-483
|
Rabølle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J]. Chemosphere, 2000, 40(7):715-722
|
Huang C H, Renew J, Smeby K L, et al. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis[J]. Journal of Contemporary Water Research & Education, 2001, 120:4
|
Zhang J Q, Dong Y H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China[J]. Journal of Hazardous Materials, 2008, 151(2-3):833-839
|
McEwen S A, Fedorka-Cray P J. Antimicrobial use and resistance in animals[J]. Clinical Infectious Diseases, 2002, 34(Supplement_3):S93-S106
|
Kumar K, Gupta S C, Baidoo S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure[J]. Journal of Environmental Quality, 2005, 34(6):2082-2085
|
Zhou L J, Ying G G, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. The Science of the Total Environment, 2013, 444:183-195
|
Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000:A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6):1202-1211
|
Awad Y M, Lee S S, Kim S C, et al. Novel approaches to monitoring and remediation of veterinary antibiotics in soil and water:A review[J]. Korean Journal of Environmental Agriculture, 2010, 29(4):315-327
|
张浩, 罗义, 周启星. 四环素类抗生素生态毒性研究进展[J]. 农业环境科学学报, 2008, 27(2):407-413
Zhang H, Luo Y, Zhou Q X. Research advancement of eco-toxicity of tetracycline antibiotics[J]. Journal of Agro-Environment Science, 2008, 27(2):407-413(in Chinese)
|
章明奎, 王丽平, 郑顺安. 两种外源抗生素在农业土壤中的吸附与迁移特性[J]. 生态学报, 2008, 28(2):761-766
Zhang M K, Wang L P, Zheng S A. Adsorption and transport characteristics of two exterior-source antibiotics in some agricultural soils[J]. Acta Ecologica Sinica, 2008, 28(2):761-766(in Chinese)
|
刘新程, 董元华, 王辉. 江苏省集约化养殖畜禽排泄物中四环素类抗生素残留调查[J]. 农业环境科学学报, 2008, 27(3):1177-1182
Liu X C, Dong Y H, Wang H. Residues of tetracyclines in animal manure from intensive farm in Jiangsu Province[J]. Journal of Agro-Environment Science, 2008, 27(3):1177-1182(in Chinese)
|
National Research Council. The effects on human health of subtherapeutic use of antimicrobials in animal feeds[R]. Washington DC:National Academy of Sciences, 1980
|
Wang R, Feng F, Chai Y F, et al. Screening and quantitation of residual antibiotics in two different swine wastewater treatment systems during warm and cold seasons[J]. Science of the Total Environment, 2019, 660:1542-1554
|
Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 2010, 408(5):1069-1075
|
胡献刚, 罗义, 周启星, 等. 固相萃取-高效液相色谱法测定畜牧粪便中13种抗生素药物残留[J]. 分析化学, 2008, 36(9):1162-1166
Hu X G, Luo Y, Zhou Q X, et al. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2008, 36(9):1162-1166(in Chinese)
|
Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China[J]. Environmental Pollution, 2010, 158(9):2992-2998
|
Li Y W, Wu X L, Mo C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, Southern China[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13):7268-7276
|
Christian T, Schneider R J, Färber H A, et al. Determination of antibiotic residues in manure, soil, and surface waters[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1):36-44
|
Matsui Y, Ozu T, Inoue T, et al. Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms[J]. Desalination, 2008, 226(1-3):215-221
|
Batt A L, Snow D D, Aga D S. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA[J]. Chemosphere, 2006, 64(11):1963-1971
|
Campagnolo E R, Johnson K R, Karpati A, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations[J]. Science of the Total Environment, 2002, 299(1-3):89-95
|
Chen H Y, Zheng W F, Shen X M, et al. Occurrence, distribution, and ecological risk assessment of antibiotics in different environmental media in Anqing, Anhui Province, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(15):8112
|
Jones A D, Bruland G L, Agrawal S G, et al. Factors influencing the sorption of oxytetracycline to soils[J]. Environmental Toxicology and Chemistry, 2005, 24(4):761-770
|
Loke M L, Tjørnelund J, Halling-Sørensen B. Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure[J]. Chemosphere, 2002, 48(3):351-361
|
Karci A, Balcioǧlu I A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey[J]. The Science of the Total Environment, 2009, 407(16):4652-4664
|
Gavalchin J, Katz S E. The persistence of fecal-borne antibiotics in soil[J]. Journal of AOAC International, 1994, 77(2):481-485
|
Vasudevan D, Bruland G L, Torrance B S, et al. pH-dependent ciprofloxacin sorption to soils:Interaction mechanisms and soil factors influencing sorption[J]. Geoderma, 2009, 151(3-4):68-76
|
Li X W, Xie Y F, Li L F, et al. Using robust Bayesian network to estimate the residuals of fluoroquinolone antibiotic in soil[J]. Environmental Science and Pollution Research International, 2015, 22(22):17540-17549
|
Li X W, Xie Y F, Li C L, et al. Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China[J]. The Science of the Total Environment, 2014, 468-469:258-264
|
Li X W, Xie Y F, Wang J F, et al. Influence of planting patterns on fluoroquinolone residues in the soil of an intensive vegetable cultivation area in Northern China[J]. Science of the Total Environment, 2013, 458-460:63-69
|
Xie Y F, Li X W, Wang J F, et al. Spatial estimation of antibiotic residues in surface soils in a typical intensive vegetable cultivation area in China[J]. The Science of the Total Environment, 2012, 430:126-131
|
Li C, Chen J Y, Wang J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. The Science of the Total Environment, 2015, 521-522:101-107
|
Lunestad B T, Goksøyr J. Reduction in the antibacterial effect of oxy-tetracycline in sea water by complex formation with magnesium and calcium[J]. Diseases of Aquatic Organisms, 1990, 9:67-72
|
Boxall A B, Blackwell P, Cavallo R, et al. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131(1-2):19-28
|
Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5):1827-1833
|
Hamscher G, Sczesny S, Höper H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. Analytical Chemistry, 2002, 74(7):1509-1518
|
Li J J, Xin Z H, Zhang Y Z, et al. Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil[J]. Applied Soil Ecology, 2017, 121:193-200
|
Sicbaldi F, Sacchi G A, Trevisan M, et al. Root uptake and xylem translocation of pesticides from different chemical classes[J]. Pesticide Science, 1997, 50(2):111-119
|
Miller E L, Nason S L, Karthikeyan K G, et al. Root uptake of pharmaceuticals and personal care product ingredients[J]. Environmental Science & Technology, 2016, 50(2):525-541
|
Goldstein M, Shenker M, Chefetz B. Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables[J]. Environmental Science & Technology, 2014, 48(10):5593-5600
|
Riemenschneider C, Seiwert B, Moeder M, et al. Extensive transformation of the pharmaceutical carbamazepine following uptake into intact tomato plants[J]. Environmental Science & Technology, 2017, 51(11):6100-6109
|
Schröder P, Scheer C E, Diekmann F, et al. How plants cope with foreign compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare)[J]. Environmental Science and Pollution Research International, 2007, 14(2):114-122
|
Bartha B, Huber C, Schröder P. Uptake and metabolism of diclofenac in Typha latifolia-How plants cope with human pharmaceutical pollution[J]. Plant Science:An International Journal of Experimental Plant Biology, 2014, 227:12-20
|
Li X D, Yu H X, Xu S S, et al. Uptake of three sulfonamides from contaminated soil by pakchoi cabbage[J]. Ecotoxicology and Environmental Safety, 2013, 92:297-302
|
Dolliver H, Kumar K, Gupta S. Sulfamethazine uptake by plants from manure-amended soil[J]. Journal of Environmental Quality, 2007, 36(4):1224-1230
|
Lv Y, Li Y Y, Liu X H, et al. The tolerance mechanism and accumulation characteristics of Phragmites australis to sulfamethoxazole and ofloxacin[J]. Chemosphere, 2020, 253:126695
|
Bassil R J, Bashour I I, Sleiman F T, et al. Antibiotic uptake by plants from manure-amended soils[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48(7):570-574
|
Sallach J B, Zhang Y P, Hodges L, et al. Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation[J]. Environmental Pollution, 2015, 197:269-277
|
Hurtado C, Domínguez C, Pérez-Babace L, et al. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions[J]. Journal of Hazardous Materials, 2016, 305:139-148
|
Zhao F K, Yang L, Chen L D, et al. Bioaccumulation of antibiotics in crops under long-term manure application:Occurrence, biomass response and human exposure[J]. Chemosphere, 2019, 219:882-895
|
Pan M, Chu L M. Transfer of antibiotics from wastewater or animal manure to soil and edible crops[J]. Environmental Pollution, 2017, 231:829-836
|
Michelini L, Reichel R, Werner W, et al. Sulfadiazine uptake and effects on Salix fragilis L. and Zea mays L. plants[J]. Water, Air, & Soil Pollution, 2012, 223(8):5243-5257
|
Liu L, Liu Y H, Liu C X, et al. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions[J]. Ecological Engineering, 2013, 53:138-143
|
Christou A, Antoniou C, Christodoulou C, et al. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants[J]. The Science of the Total Environment, 2016, 557-558:652-664
|
Liu X H, Lv Y, Xu K, et al. Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes[J]. Chemosphere, 2018, 201:137-143
|
Chen H R, Rairat T, Loh S H, et al. Assessment of veterinary drugs in plants using pharmacokinetic approaches:The absorption, distribution and elimination of tetracycline and sulfamethoxazole in ephemeral vegetables[J]. PLoS One, 2017, 12(8):e0183087
|
Lv Y, Xu J M, Xu K, et al. Accumulation characteristics and biological response of ginger to sulfamethoxazole and ofloxacin[J]. Environmental Pollution, 2020, 262:114203
|
Mohammad M, Itoh K, Suyama K, et al. Recovery of Lemna sp. after exposure to sulfonylurea herbicides[J]. Bulletin of Environmental Contamination and Toxicology, 2006, 76(2):256-263
|
Marchiol L, Fellet G, Perosa D, et al. Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes:A field experience[J]. Plant Physiology and Biochemistry, 2007, 45(5):379-387
|
Minden V, Deloy A, Volkert A M, et al. Antibiotics impact plant traits, even at small concentrations[J]. AoB Plants, 2017, 9(2):plx010
|
Hillis D G, Fletcher J, Solomon K R, et al. Effects of ten antibiotics on seed germination and root elongation in three plant species[J]. Archives of Environmental Contamination and Toxicology, 2011, 60(2):220-232
|
Yang Q X, Zhang J, Zhang W Y, et al. Influence of tetracycline exposure on the growth of wheat seedlings and the rhizosphere microbial community structure in hydroponic culture[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45(3):190-197
|
Ziolkowska A, Piotrowicz-Cieslak A I, Margas M, et al. Accumulation of tetracycline, oxytetracycline and chlortetracycline in pea (Pisum sativum L.)[J]. Fresenius Environmental Bulletin, 2015, 24:1386-1391
|
Riaz L, Mahmood T, Coyne M S, et al. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics[J]. Chemosphere, 2017, 177:250-257
|
Bellino A, Lofrano G, Carotenuto M, et al. Antibiotic effects on seed germination and root development of tomato (Solanum lycopersicum L.)[J]. Ecotoxicology and Environmental Safety, 2018, 148:135-141
|
Sartorius M, Riccio A, Cermola M, et al. Sulphadimethoxine inhibits Phaseolus vulgaris root growth and development of N-fixing nodules[J]. Chemosphere, 2009, 76(3):306-312
|
Gomes M P, Richardi V S, Bicalho E M, et al. Effects of ciprofloxacin and Roundup on seed germination and root development of maize[J]. The Science of the Total Environment, 2019, 651(Pt 2):2671-2678
|
Xu Y G, Yu W T, Ma Q, et al. Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings[J]. Ecotoxicology and Environmental Safety, 2017, 142:250-256
|
Xie X J, Zhou Q X, He Z C, et al. Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.)[J]. Environmental Toxicology and Chemistry, 2010, 29(4):922-928
|
Xie X J, Zhou Q X, Lin D S, et al. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.)[J]. Environmental Science and Pollution Research International, 2011, 18(4):566-575
|
魏瑞成, 邵明诚, 陈明, 等. 金霉素和4-差向金霉素对油菜生长的影响及其在幼苗体内的积累[J]. 农业环境科学学报, 2012, 31(7):1289-1295
Wei R C, Shao M C, Chen M, et al. Effects of chlortetracycline and 4-epi-chlortetracycline on the growth of rape and its accumulation in seedling[J]. Journal of Agro-Environment Science, 2012, 31(7):1289-1295(in Chinese)
|
Wang J M, Lin H, Sun W C, et al. Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable-soil systems following manure application[J]. Journal of Hazardous Materials, 2016, 304:49-57
|
Mukhtar A, Manzoor M, Gul I, et al. Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments[J]. Chemosphere, 2020, 258:127353
|
An J, Zhou Q X, Sun F H, et al. Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2009, 169(1-3):751-757
|
Pan M, Chu L M. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops[J]. Ecotoxicology and Environmental Safety, 2016, 126:228-237
|
Taylor A G, Salanenka Y A. Seed treatments:Phytotoxicity amelioration and tracer uptake[J]. Seed Science Research, 2012, 22(S1):S86-S90
|
Migliore L, Brambilla G, Casoria P, et al. Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliposida)[J]. Agriculture, Ecosystems & Environment, 1996, 60(2-3):121-128
|
Migliore L. Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays)[J]. Agriculture, Ecosystems & Environment, 1995, 52(2-3):103-110
|
Migliore L, Civitareale C, Cozzolino S, et al. Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants[J]. Chemosphere, 1998, 37(14-15):2957-2961
|
Wen B, Liu Y, Wang P, et al. Toxic effects of chlortetracycline on maize growth, reactive oxygen species generation and the antioxidant response[J]. Journal of Environmental Sciences (China), 2012, 24(6):1099-1105
|
Li Z J, Xie X Y, Zhang S Q, et al. Wheat growth and photosynthesis as affected by oxytetracycline as a soil contaminant[J]. Pedosphere, 2011, 21(2):244-250
|
Han T, Wang B S, Wu Z N, et al. Providing a view for toxicity mechanism of tetracycline by analysis of the connections between metabolites and biologic endpoints of wheat[J]. Ecotoxicology and Environmental Safety, 2021, 212:111998
|
Han T, Liang Y P, Wu Z N, et al. Effects of tetracycline on growth, oxidative stress response, and metabolite pattern of ryegrass[J]. Journal of Hazardous Materials, 2019, 380:120885
|
Xiong J Q, Kurade M B, Jeon B H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium[J]. Environmental Pollution, 2017, 226:486-493
|
Sharma N, Arrigoni G, Ebinezer L B, et al. A proteomic and biochemical investigation on the effects of sulfadiazine in Arabidopsis thaliana[J]. Ecotoxicology and Environmental Safety, 2019, 178:146-158
|
Michelini L, La Rocca N, Rascio N, et al. Structural and functional alterations induced by two sulfonamide antibiotics on barley plants[J]. Plant Physiology and Biochemistry, 2013, 67:55-62
|
Michelini L, Meggio F, La Rocca N, et al. Accumulation and effects of sulfadimethoxine in Salix fragilis L. plants:A preliminary study to phytoremediation purposes[J]. International Journal of Phytoremediation, 2012, 14(4):388-402
|
Piotrowicz-Cieślak A I, Adomas B, Nałecz-Jawecki G, et al. Phytotoxicity of sulfamethazine soil pollutant to six legume plant species[J]. Journal of Toxicology and Environmental Health Part A, 2010, 73(17-18):1220-1229
|
Aristilde L, Melis A, Sposito G. Inhibition of photosynthesis by a fluoroquinolone antibiotic[J]. Environmental Science & Technology, 2010, 44(4):1444-1450
|
Migliore L, Cozzolino S, Fiori M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere, 2003, 52(7):1233-1244
|
Zhao C Y, Ru S G, Cui P F, et al. Multiple metabolic pathways of enrofloxacin by Lolium perenne L.:Ecotoxicity, biodegradation, and key driven genes[J]. Water Research, 2021, 202:117413
|
Xu L L, Li Z H, Zhuang B Y, et al. Enrofloxacin perturbs nitrogen transformation and assimilation in rice seedlings (Oryza sativa L.)[J]. The Science of the Total Environment, 2022, 802:149900
|
Zhao H M, Huang H B, Du H, et al. Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis)[J]. Journal of Hazardous Materials, 2018, 349:252-261
|
Gomes M P, Bicalho E M, Smedbol É, et al. Glyphosate can decrease germination of glyphosate-resistant soybeans[J]. Journal of Agricultural and Food Chemistry, 2017, 65(11):2279-2286
|
Hénault-Ethier L, Lucotte M, Moingt M, et al. Herbaceous or Salix miyabeana 'SX64' narrow buffer strips as a means to minimize glyphosate and aminomethylphosphonic acid leaching from row crop fields[J]. The Science of the Total Environment, 2017, 598:1177-1186
|
Li N, Wang K, Lv Y, et al. Silicon enhanced the resistance of Chinese cabbage (Brassica rapa L. ssp. pekinensis) to ofloxacin on the growth, photosynthetic characteristics and antioxidant system[J]. Plant Physiology and Biochemistry, 2022, 175:44-57
|
Wang R, Wang J, Wang J H, et al. Growth inhibiting effects of four antibiotics on cucumber, rape and Chinese cabbage[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(1):187-192
|
鲍陈燕, 顾国平, 章明奎. 兽用抗生素胁迫对水芹生长及其抗生素积累的影响[J]. 土壤通报, 2016, 47(1):164-172
Bao C Y, Gu G P, Zhang M K. Effects of veterinary antibiotics stress on growth and antibiotics accumulation of Oenanthe javanica DC[J]. Chinese Journal of Soil Science, 2016, 47(1):164-172(in Chinese)
|
Yu Q X, Ahammed G J, Zhou Y H, et al. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem[J]. Scientific Reports, 2017, 7:43096
|
Xie X J, Zhou Q X, Bao Q H, et al. Genotoxicity of tetracycline as an emerging pollutant on root meristem cells of wheat (Triticum aestivum L.)[J]. Environmental Toxicology, 2011, 26(4):417-423
|
Tong X N, Wang X Z, He X J, et al. Effects of antibiotics on nitrogen uptake of four wetland plant species grown under hydroponic culture[J]. Environmental Science and Pollution Research International, 2019, 26(11):10621-10630
|
Panja S, Sarkar D, Li K F, et al. Uptake and transformation of ciprofloxacin by vetiver grass (Chrysopogon zizanioides)[J]. International Biodeterioration & Biodegradation, 2019, 142:200-210
|
Tasho R P, Shin W T, Cho J Y. Acclimatization of Pisum sativum L., grown in soil contaminated with veterinary antibiotics, an attribute of dose hormetic response of root metabolites[J]. The Science of the Total Environment, 2018, 635:364-374
|
Liu X N, Lv Y, Gao S, et al. Ofloxacin induces etiolation in Welsh onion leaves[J]. Chemosphere, 2021, 267:128918
|
Zhang Z H, Liu X N, Lv Y, et al. Grafting resulting in alleviating tomato plant oxidative damage caused by high levels of ofloxacin[J]. Environmental Pollution, 2021, 286:117331
|
Zhu L M, Xu H T, Xiao W S, et al. Ecotoxicological effects of sulfonamide on and its removal by the submerged plant Vallisneria natans (Lour.) Hara[J]. Water Research, 2020, 170:115354
|
Khan K Y, Ali B, Zhang S, et al. Effects of antibiotics stress on growth variables, ultrastructure, and metabolite pattern of Brassica rapa ssp. chinensis[J]. The Science of the Total Environment, 2021, 778:146333
|
Chen J F, Xu H L, Sun Y B, et al. Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China[J]. The Science of the Total Environment, 2016, 543(Pt A):197-205
|
Zhang H, Li X N, Yang Q X, et al. Plant growth, antibiotic uptake, and prevalence of antibiotic resistance in an endophytic system of pakchoi under antibiotic exposure[J]. International Journal of Environmental Research and Public Health, 2017, 14(11):1336
|
Rydzyński D, Piotrowicz-Cieślak A I, Grajek H, et al. Instability of chlorophyll in yellow lupin seedlings grown in soil contaminated with ciprofloxacin and tetracycline[J]. Chemosphere, 2017, 184:62-73
|
Hammad H M, Zia F, Bakhat H F, et al. Uptake and toxicological effects of pharmaceutical active compounds on maize[J]. Agriculture, Ecosystems & Environment, 2018, 258:143-148
|
Pierattini E C, Francini A, Raffaelli A, et al. Morpho-physiological response of Populus alba to erythromycin:A timeline of the health status of the plant[J]. The Science of the Total Environment, 2016, 569-570:540-547
|
迟荪琳, 王卫中, 徐卫红, 等. 四环素类抗生素对不同蔬菜生长的影响及其富集转运特征[J]. 环境科学, 2018, 39(2):935-943
Chi S L, Wang W Z, Xu W H, et al. Effects of tetracycline antibiotics on growth and characteristics of enrichment and transformation in two vegetables[J]. Environmental Science, 2018, 39(2):935-943(in Chinese)
|
Chen S, Zhang W, Li J Y, et al. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum)[J]. Environmental Pollution, 2020, 263(Pt A):114554
|
Xiong J Q, Kurade M B, Jeon B H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris[J]. Chemical Engineering Journal, 2017, 313:1251-1257
|
Wan J J, Guo P Y, Peng X F, et al. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae[J]. Journal of Hazardous Materials, 2015, 283:778-786
|
Wan J J, Guo P Y, Zhang S X. Response of the cyanobacterium Microcystis flos-aquae to levofloxacin[J]. Environmental Science and Pollution Research, 2014, 21(5):3858-3865
|
Migliore L, Civitareale C, Brambilla G, et al. Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L.)[J]. Agriculture, Ecosystems & Environment, 1997, 65(2):163-168
|
Kurade M B, Kim J R, Govindwar S P, et al. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris:Microalgal tolerance to xenobiotic pollutants and metabolism[J]. Algal Research, 2016, 20:126-134
|
Kurade M B, Xiong J Q, Govindwar S P, et al. Uptake and biodegradation of emerging contaminant sulfamethoxazole from aqueous phase using Ipomoea aquatica[J]. Chemosphere, 2019, 225:696-704
|
Yan Y, Xu X G, Shi C F, et al. Ecotoxicological effects and accumulation of ciprofloxacin in Eichhornia crassipes under hydroponic conditions[J]. Environmental Science and Pollution Research International, 2019, 26(29):30348-30355
|
Gomes M P, de Brito J C M, Bicalho E M, et al. Ciprofloxacin vs. temperature:Antibiotic toxicity in the free-floating liverwort Ricciocarpus natans from a climate change perspective[J]. Chemosphere, 2018, 202:410-419
|
Gomes M P, Gonçalves C A, de Brito J C M, et al. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.):Implications for energy metabolism and antibiotic-uptake ability[J]. Journal of Hazardous Materials, 2017, 328:140-149
|
Gomes M P, de Brito J C M, Carvalho Carneiro M M L, et al. Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin:Impacts on biofertilization[J]. Environmental Pollution, 2018, 232:293-299
|
Yan Y, Chen Y, Xu X G, et al. Effects and removal of the antibiotic sulfadiazine by Eichhornia crassipes:Potential use for phytoremediation[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(2):342-347
|
Ahmadabadi Z, Zarei M, Yasrebi J, et al. The effect of bio/organic fertilizers on the phytotoxicity of sulfadiazine to Echium amoenum in a calcareous soil[J]. Ecotoxicology and Environmental Safety, 2021, 208:111408
|
Gao P J, Zuo Z J, Wu X B, et al. Effects of cycloheximide on photosynthetic abilities, reflectance spectra and fluorescence emission spectra in Phyllostachys edulis[J]. Trees, 2016, 30(3):719-732
|
Deng C N, Zhang D Y, Pan X L. Toxic effects of erythromycin on photosystem Ⅰ and Ⅱ in Microcystis aeruginosa[J]. Photosynthetica, 2014, 52(4):574-580
|
Liu B Y, Nie X P, Liu W Q, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum[J]. Ecotoxicology and Environmental Safety, 2011, 74(4):1027-1035
|
Copaciu F, Opriş O, Niinemets Ü, et al. Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves[J]. Water, Air, and Soil Pollution, 2016, 227(6):196
|
Opriş O, Copaciu F, Soran M L, et al. Content of carotenoids, violaxanthin and neoxanthin in leaves of Triticum aestivum exposed to persistent environmental pollutants[J]. Molecules, 2021, 26(15):4448
|
Devireddy A R, Inupakutika M A, Willmon D, et al. Veterinary antibiotics influence trigonelline biosynthesis and plant growth in Arachis hypogaea L[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2017, 67(3):245-251
|
Evans-Roberts K M, Mitchenall L A, Wall M K, et al. DNA gyrase is the target for the quinolone drug ciprofloxacin in Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2016, 291(7):3136-3144
|
Wall M K, Mitchenall L A, Maxwell A. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(20):7821-7826
|
Ahmad P, Abdel Latef A A, Hashem A, et al. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea[J]. Frontiers in Plant Science, 2016, 7:347
|
Ding W, Hudson L G, Liu K J. Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes[J]. Molecular and Cellular Biochemistry, 2005, 279(1):105-112
|
Pilati S, Brazzale D, Guella G, et al. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin[J]. BMC Plant Biology, 2014, 14:87
|
Yin Y, Jia H X, Sun Y Y, et al. Bioaccumulation and ROS generation in liver of Carassius auratus, exposed to phenanthrene[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2007, 145(2):288-293
|
Lin R Z, Wang X R, Luo Y, et al. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.)[J]. Chemosphere, 2007, 69(1):89-98
|
Nimptsch J, Pflugmacher S. Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense[J]. Chemosphere, 2007, 66(4):708-714
|
Scandalios J G. Oxidative stress:Molecular perception and transduction of signals triggering antioxidant gene defenses[J]. Brazilian Journal of Medical and Biological Research, 2005, 38(7):995-1014
|
Song G L, Gao Y, Wu H, et al. Physiological effect of anatase TiO2 nanoparticles on Lemna minor[J]. Environmental Toxicology and Chemistry, 2012, 31(9):2147-2152
|
Pejić S, Todorović A, Stojiljković V, et al. Antioxidant enzymes and lipid peroxidation in endometrium of patients with polyps, myoma, hyperplasia and adenocarcinoma[J]. Reproductive Biology and Endocrinology, 2009, 7:149
|
Gao S, Ouyang C, Wang S, et al. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings[J]. Plant, Soil and Environment, 2008, 54(9):374-381
|
Yong Z, Tang H R, Ya L. Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress[J]. World Journal of Agricultural Sciences, 2008, 4(4):458-462
|
Nie X P, Liu B Y, Yu H J, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata[J]. Environmental Pollution, 2013, 172:23-32
|
Liu Y, Guan Y T, Gao B Y, et al. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2012, 86:23-30
|
Schmitt M A, Evans S D, Randall G W. Effect of liquid manure application methods on soil nitrogen and corn grain yields[J]. Journal of Production Agriculture, 1995, 8(2):186-189
|