Kumar R R, Lee J T, Cho J Y. Fate, occurrence, and toxicity of veterinary antibiotics in environment[J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(6):701-709
周启星, 罗义, 王美娥. 抗生素的环境残留、生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3):243-251 Zhou Q X, Luo Y, Wang M E. Environmental residues and ecotoxicity of antibiotics and their resistance gene pollution:A review[J]. Asian Journal of Ecotoxicology, 2007, 2(3):243-251(in Chinese)
Sriram A, Kalanxhi E, Kapoor G, et al. State of the world's antibiotics 2021:A global analysis of antimicrobial resistance and its drivers[R]. Washington DC:Center for Disease Dynamics, Economics & Policy, 2021
中华人民共和国农业农村部. 2020年中国兽用抗菌药使用情况报告[R]. 北京:中华人民共和国农业农村部, 2020
孙刚, 袁守军, 计峰, 等. 畜禽粪便中抗生素残留危害及其研究进展[J]. 环境与健康杂志, 2009, 26(3):277-279 Sun G, Yuan S J, Ji F, et al. Environmental impact of antibiotics contamination from livestock and poultry dejecta:A review of recent researches[J]. Journal of Environment and Health, 2009, 26(3):277-279(in Chinese)
Awad Y M, Kim S C, Abd El-Azeem S A M, et al. Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility[J]. Environmental Earth Sciences, 2014, 71(3):1433-1440
Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. Current Opinion in Microbiology, 2011, 14(3):236-243
刘伟, 王慧, 陈小军, 等. 抗生素在环境中降解的研究进展[J]. 动物医学进展, 2009, 30(3):89-94 Liu W, Wang H, Chen X J, et al. Progress on degradation of antibiotics in environment[J]. Progress in Veterinary Medicine, 2009, 30(3):89-94(in Chinese)
Baguer A J, Jensen J, Krogh P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna[J]. Chemosphere, 2000, 40(7):751-757
Costanzo S D, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment[J]. Marine Pollution Bulletin, 2005, 51(1-4):218-223
Kotzerke A, Sharma S, Schauss K, et al. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure[J]. Environmental Pollution, 2008, 153(2):315-322
Kotzerke A, Hammesfahr U, Kleineidam K, et al. Influence of difloxacin-contaminated manure on microbial community structure and function in soils[J]. Biology and Fertility of Soils, 2011, 47(2):177-186
Liu F, Ying G G, Tao R, et al. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities[J]. Environmental Pollution, 2009, 157(5):1636-1642
Underwood J C, Harvey R W, Metge D W, et al. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment[J]. Environmental Science & Technology, 2011, 45(7):3096-3101
Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450
王明利. 改革开放四十年我国畜牧业发展:成就、经验及未来趋势[J]. 农业经济问题, 2018, 39(8):60-70 Wang M L. China's livestock industry development:Achievements, experiences and future trends[J]. Issues in Agricultural Economy, 2018, 39(8):60-70(in Chinese)
张慧敏, 章明奎, 顾国平. 浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J]. 生态与农村环境学报, 2008, 24(3):69-73 Zhang H M, Zhang M K, Gu G P. Residues of tetracyclines in livestock and poultry manures and agricultural soils from North Zhejiang Province[J]. Journal of Ecology and Rural Environment, 2008, 24(3):69-73(in Chinese)
吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6):1168-1176 Wu H W, Sun X Q, Liang B W, et al. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization[J]. Journal of Agro-Environment Science, 2020, 39(6):1168-1176(in Chinese)
Pufal G, Memmert J, Leonhardt S D, et al. Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels[J]. Environmental Pollution, 2019, 245:531-544
Yang Q X, Zhang H, Guo Y H, et al. Influence of chicken manure fertilization on antibiotic-resistant bacteria in soil and the endophytic bacteria of pakchoi[J]. International Journal of Environmental Research and Public Health, 2016, 13(7):662
王冰, 孙成, 胡冠九. 环境中抗生素残留潜在风险及其研究进展[J]. 环境科学与技术, 2007, 30(3):108-111 , 121 Wang B, Sun C, Hu G J. Residue antibiotics in environment:Potential risks and relevant studies[J]. Environmental Science & Technology, 2007, 30(3):108-111, 121(in Chinese)
Dewey C, Cox B, Straw B, et al. Use of antimicrobials in swine feeds in the United States[J]. Journal of Swine Health and Production, 1999, 7:19-25
Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils-A review[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2):145-167
Feinman S E, Matheson Ⅲ J C. Draft environmental impact statement subtherapeutic antibacterial agents in animal feeds[R]. Rockville, MD, USA:Bureau of Veterinary Medicine, Food and Drug Administration, 1978
Lamshöft M, Sukul P, Zühlke S, et al. Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs[J]. Analytical and Bioanalytical Chemistry, 2007, 388(8):1733-1745
Grote M, Vockel A, Schwarze D, et al. Fate of antibiotics in food chain and environment originating from pig fattening[J]. Fresenius Environmental Bulletin, 2004, 13:1214-1216
Figueroa R A, Leonard A, MacKay A A. Modeling tetracycline antibiotic sorption to clays[J]. Environmental Science & Technology, 2004, 38(2):476-483
Rabølle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J]. Chemosphere, 2000, 40(7):715-722
Huang C H, Renew J, Smeby K L, et al. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis[J]. Journal of Contemporary Water Research & Education, 2001, 120:4
Zhang J Q, Dong Y H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China[J]. Journal of Hazardous Materials, 2008, 151(2-3):833-839
McEwen S A, Fedorka-Cray P J. Antimicrobial use and resistance in animals[J]. Clinical Infectious Diseases, 2002, 34(Supplement_3):S93-S106
Kumar K, Gupta S C, Baidoo S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure[J]. Journal of Environmental Quality, 2005, 34(6):2082-2085
Zhou L J, Ying G G, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. The Science of the Total Environment, 2013, 444:183-195
Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000:A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6):1202-1211
Awad Y M, Lee S S, Kim S C, et al. Novel approaches to monitoring and remediation of veterinary antibiotics in soil and water:A review[J]. Korean Journal of Environmental Agriculture, 2010, 29(4):315-327
张浩, 罗义, 周启星. 四环素类抗生素生态毒性研究进展[J]. 农业环境科学学报, 2008, 27(2):407-413 Zhang H, Luo Y, Zhou Q X. Research advancement of eco-toxicity of tetracycline antibiotics[J]. Journal of Agro-Environment Science, 2008, 27(2):407-413(in Chinese)
章明奎, 王丽平, 郑顺安. 两种外源抗生素在农业土壤中的吸附与迁移特性[J]. 生态学报, 2008, 28(2):761-766 Zhang M K, Wang L P, Zheng S A. Adsorption and transport characteristics of two exterior-source antibiotics in some agricultural soils[J]. Acta Ecologica Sinica, 2008, 28(2):761-766(in Chinese)
刘新程, 董元华, 王辉. 江苏省集约化养殖畜禽排泄物中四环素类抗生素残留调查[J]. 农业环境科学学报, 2008, 27(3):1177-1182 Liu X C, Dong Y H, Wang H. Residues of tetracyclines in animal manure from intensive farm in Jiangsu Province[J]. Journal of Agro-Environment Science, 2008, 27(3):1177-1182(in Chinese)
National Research Council. The effects on human health of subtherapeutic use of antimicrobials in animal feeds[R]. Washington DC:National Academy of Sciences, 1980
Wang R, Feng F, Chai Y F, et al. Screening and quantitation of residual antibiotics in two different swine wastewater treatment systems during warm and cold seasons[J]. Science of the Total Environment, 2019, 660:1542-1554
Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 2010, 408(5):1069-1075
胡献刚, 罗义, 周启星, 等. 固相萃取-高效液相色谱法测定畜牧粪便中13种抗生素药物残留[J]. 分析化学, 2008, 36(9):1162-1166 Hu X G, Luo Y, Zhou Q X, et al. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2008, 36(9):1162-1166(in Chinese)
Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China[J]. Environmental Pollution, 2010, 158(9):2992-2998
Li Y W, Wu X L, Mo C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, Southern China[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13):7268-7276
Christian T, Schneider R J, Färber H A, et al. Determination of antibiotic residues in manure, soil, and surface waters[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1):36-44
Matsui Y, Ozu T, Inoue T, et al. Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms[J]. Desalination, 2008, 226(1-3):215-221
Batt A L, Snow D D, Aga D S. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA[J]. Chemosphere, 2006, 64(11):1963-1971
Campagnolo E R, Johnson K R, Karpati A, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations[J]. Science of the Total Environment, 2002, 299(1-3):89-95
Chen H Y, Zheng W F, Shen X M, et al. Occurrence, distribution, and ecological risk assessment of antibiotics in different environmental media in Anqing, Anhui Province, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(15):8112
Jones A D, Bruland G L, Agrawal S G, et al. Factors influencing the sorption of oxytetracycline to soils[J]. Environmental Toxicology and Chemistry, 2005, 24(4):761-770
Loke M L, Tjørnelund J, Halling-Sørensen B. Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure[J]. Chemosphere, 2002, 48(3):351-361
Karci A, Balcioǧlu I A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey[J]. The Science of the Total Environment, 2009, 407(16):4652-4664
Gavalchin J, Katz S E. The persistence of fecal-borne antibiotics in soil[J]. Journal of AOAC International, 1994, 77(2):481-485
Vasudevan D, Bruland G L, Torrance B S, et al. pH-dependent ciprofloxacin sorption to soils:Interaction mechanisms and soil factors influencing sorption[J]. Geoderma, 2009, 151(3-4):68-76
Li X W, Xie Y F, Li L F, et al. Using robust Bayesian network to estimate the residuals of fluoroquinolone antibiotic in soil[J]. Environmental Science and Pollution Research International, 2015, 22(22):17540-17549
Li X W, Xie Y F, Li C L, et al. Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China[J]. The Science of the Total Environment, 2014, 468-469:258-264
Li X W, Xie Y F, Wang J F, et al. Influence of planting patterns on fluoroquinolone residues in the soil of an intensive vegetable cultivation area in Northern China[J]. Science of the Total Environment, 2013, 458-460:63-69
Xie Y F, Li X W, Wang J F, et al. Spatial estimation of antibiotic residues in surface soils in a typical intensive vegetable cultivation area in China[J]. The Science of the Total Environment, 2012, 430:126-131
Li C, Chen J Y, Wang J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. The Science of the Total Environment, 2015, 521-522:101-107
Lunestad B T, Goksøyr J. Reduction in the antibacterial effect of oxy-tetracycline in sea water by complex formation with magnesium and calcium[J]. Diseases of Aquatic Organisms, 1990, 9:67-72
Boxall A B, Blackwell P, Cavallo R, et al. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131(1-2):19-28
Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5):1827-1833
Hamscher G, Sczesny S, Höper H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. Analytical Chemistry, 2002, 74(7):1509-1518
Li J J, Xin Z H, Zhang Y Z, et al. Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil[J]. Applied Soil Ecology, 2017, 121:193-200
Sicbaldi F, Sacchi G A, Trevisan M, et al. Root uptake and xylem translocation of pesticides from different chemical classes[J]. Pesticide Science, 1997, 50(2):111-119
Miller E L, Nason S L, Karthikeyan K G, et al. Root uptake of pharmaceuticals and personal care product ingredients[J]. Environmental Science & Technology, 2016, 50(2):525-541
Goldstein M, Shenker M, Chefetz B. Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables[J]. Environmental Science & Technology, 2014, 48(10):5593-5600
Riemenschneider C, Seiwert B, Moeder M, et al. Extensive transformation of the pharmaceutical carbamazepine following uptake into intact tomato plants[J]. Environmental Science & Technology, 2017, 51(11):6100-6109
Schröder P, Scheer C E, Diekmann F, et al. How plants cope with foreign compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare)[J]. Environmental Science and Pollution Research International, 2007, 14(2):114-122
Bartha B, Huber C, Schröder P. Uptake and metabolism of diclofenac in Typha latifolia-How plants cope with human pharmaceutical pollution[J]. Plant Science:An International Journal of Experimental Plant Biology, 2014, 227:12-20
Li X D, Yu H X, Xu S S, et al. Uptake of three sulfonamides from contaminated soil by pakchoi cabbage[J]. Ecotoxicology and Environmental Safety, 2013, 92:297-302
Dolliver H, Kumar K, Gupta S. Sulfamethazine uptake by plants from manure-amended soil[J]. Journal of Environmental Quality, 2007, 36(4):1224-1230
Lv Y, Li Y Y, Liu X H, et al. The tolerance mechanism and accumulation characteristics of Phragmites australis to sulfamethoxazole and ofloxacin[J]. Chemosphere, 2020, 253:126695
Bassil R J, Bashour I I, Sleiman F T, et al. Antibiotic uptake by plants from manure-amended soils[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48(7):570-574
Sallach J B, Zhang Y P, Hodges L, et al. Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation[J]. Environmental Pollution, 2015, 197:269-277
Hurtado C, Domínguez C, Pérez-Babace L, et al. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions[J]. Journal of Hazardous Materials, 2016, 305:139-148
Zhao F K, Yang L, Chen L D, et al. Bioaccumulation of antibiotics in crops under long-term manure application:Occurrence, biomass response and human exposure[J]. Chemosphere, 2019, 219:882-895
Pan M, Chu L M. Transfer of antibiotics from wastewater or animal manure to soil and edible crops[J]. Environmental Pollution, 2017, 231:829-836
Michelini L, Reichel R, Werner W, et al. Sulfadiazine uptake and effects on Salix fragilis L. and Zea mays L. plants[J]. Water, Air, & Soil Pollution, 2012, 223(8):5243-5257
Liu L, Liu Y H, Liu C X, et al. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions[J]. Ecological Engineering, 2013, 53:138-143
Christou A, Antoniou C, Christodoulou C, et al. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants[J]. The Science of the Total Environment, 2016, 557-558:652-664
Liu X H, Lv Y, Xu K, et al. Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes[J]. Chemosphere, 2018, 201:137-143
Chen H R, Rairat T, Loh S H, et al. Assessment of veterinary drugs in plants using pharmacokinetic approaches:The absorption, distribution and elimination of tetracycline and sulfamethoxazole in ephemeral vegetables[J]. PLoS One, 2017, 12(8):e0183087
Lv Y, Xu J M, Xu K, et al. Accumulation characteristics and biological response of ginger to sulfamethoxazole and ofloxacin[J]. Environmental Pollution, 2020, 262:114203
Mohammad M, Itoh K, Suyama K, et al. Recovery of Lemna sp. after exposure to sulfonylurea herbicides[J]. Bulletin of Environmental Contamination and Toxicology, 2006, 76(2):256-263
Marchiol L, Fellet G, Perosa D, et al. Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes:A field experience[J]. Plant Physiology and Biochemistry, 2007, 45(5):379-387
Minden V, Deloy A, Volkert A M, et al. Antibiotics impact plant traits, even at small concentrations[J]. AoB Plants, 2017, 9(2):plx010
Hillis D G, Fletcher J, Solomon K R, et al. Effects of ten antibiotics on seed germination and root elongation in three plant species[J]. Archives of Environmental Contamination and Toxicology, 2011, 60(2):220-232
Yang Q X, Zhang J, Zhang W Y, et al. Influence of tetracycline exposure on the growth of wheat seedlings and the rhizosphere microbial community structure in hydroponic culture[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45(3):190-197
Ziolkowska A, Piotrowicz-Cieslak A I, Margas M, et al. Accumulation of tetracycline, oxytetracycline and chlortetracycline in pea (Pisum sativum L.)[J]. Fresenius Environmental Bulletin, 2015, 24:1386-1391
Riaz L, Mahmood T, Coyne M S, et al. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics[J]. Chemosphere, 2017, 177:250-257
Bellino A, Lofrano G, Carotenuto M, et al. Antibiotic effects on seed germination and root development of tomato (Solanum lycopersicum L.)[J]. Ecotoxicology and Environmental Safety, 2018, 148:135-141
Sartorius M, Riccio A, Cermola M, et al. Sulphadimethoxine inhibits Phaseolus vulgaris root growth and development of N-fixing nodules[J]. Chemosphere, 2009, 76(3):306-312
Gomes M P, Richardi V S, Bicalho E M, et al. Effects of ciprofloxacin and Roundup on seed germination and root development of maize[J]. The Science of the Total Environment, 2019, 651(Pt 2):2671-2678
Xu Y G, Yu W T, Ma Q, et al. Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings[J]. Ecotoxicology and Environmental Safety, 2017, 142:250-256
Xie X J, Zhou Q X, He Z C, et al. Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.)[J]. Environmental Toxicology and Chemistry, 2010, 29(4):922-928
Xie X J, Zhou Q X, Lin D S, et al. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.)[J]. Environmental Science and Pollution Research International, 2011, 18(4):566-575
魏瑞成, 邵明诚, 陈明, 等. 金霉素和4-差向金霉素对油菜生长的影响及其在幼苗体内的积累[J]. 农业环境科学学报, 2012, 31(7):1289-1295 Wei R C, Shao M C, Chen M, et al. Effects of chlortetracycline and 4-epi-chlortetracycline on the growth of rape and its accumulation in seedling[J]. Journal of Agro-Environment Science, 2012, 31(7):1289-1295(in Chinese)
Wang J M, Lin H, Sun W C, et al. Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable-soil systems following manure application[J]. Journal of Hazardous Materials, 2016, 304:49-57
Mukhtar A, Manzoor M, Gul I, et al. Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments[J]. Chemosphere, 2020, 258:127353
An J, Zhou Q X, Sun F H, et al. Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2009, 169(1-3):751-757
Pan M, Chu L M. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops[J]. Ecotoxicology and Environmental Safety, 2016, 126:228-237
Taylor A G, Salanenka Y A. Seed treatments:Phytotoxicity amelioration and tracer uptake[J]. Seed Science Research, 2012, 22(S1):S86-S90
Migliore L, Brambilla G, Casoria P, et al. Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliposida)[J]. Agriculture, Ecosystems & Environment, 1996, 60(2-3):121-128
Migliore L. Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays)[J]. Agriculture, Ecosystems & Environment, 1995, 52(2-3):103-110
Migliore L, Civitareale C, Cozzolino S, et al. Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants[J]. Chemosphere, 1998, 37(14-15):2957-2961
Wen B, Liu Y, Wang P, et al. Toxic effects of chlortetracycline on maize growth, reactive oxygen species generation and the antioxidant response[J]. Journal of Environmental Sciences (China), 2012, 24(6):1099-1105
Li Z J, Xie X Y, Zhang S Q, et al. Wheat growth and photosynthesis as affected by oxytetracycline as a soil contaminant[J]. Pedosphere, 2011, 21(2):244-250
Han T, Wang B S, Wu Z N, et al. Providing a view for toxicity mechanism of tetracycline by analysis of the connections between metabolites and biologic endpoints of wheat[J]. Ecotoxicology and Environmental Safety, 2021, 212:111998
Han T, Liang Y P, Wu Z N, et al. Effects of tetracycline on growth, oxidative stress response, and metabolite pattern of ryegrass[J]. Journal of Hazardous Materials, 2019, 380:120885
Xiong J Q, Kurade M B, Jeon B H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium[J]. Environmental Pollution, 2017, 226:486-493
Sharma N, Arrigoni G, Ebinezer L B, et al. A proteomic and biochemical investigation on the effects of sulfadiazine in Arabidopsis thaliana[J]. Ecotoxicology and Environmental Safety, 2019, 178:146-158
Michelini L, La Rocca N, Rascio N, et al. Structural and functional alterations induced by two sulfonamide antibiotics on barley plants[J]. Plant Physiology and Biochemistry, 2013, 67:55-62
Michelini L, Meggio F, La Rocca N, et al. Accumulation and effects of sulfadimethoxine in Salix fragilis L. plants:A preliminary study to phytoremediation purposes[J]. International Journal of Phytoremediation, 2012, 14(4):388-402
Piotrowicz-Cieślak A I, Adomas B, Nałecz-Jawecki G, et al. Phytotoxicity of sulfamethazine soil pollutant to six legume plant species[J]. Journal of Toxicology and Environmental Health Part A, 2010, 73(17-18):1220-1229
Aristilde L, Melis A, Sposito G. Inhibition of photosynthesis by a fluoroquinolone antibiotic[J]. Environmental Science & Technology, 2010, 44(4):1444-1450
Migliore L, Cozzolino S, Fiori M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere, 2003, 52(7):1233-1244
Zhao C Y, Ru S G, Cui P F, et al. Multiple metabolic pathways of enrofloxacin by Lolium perenne L.:Ecotoxicity, biodegradation, and key driven genes[J]. Water Research, 2021, 202:117413
Xu L L, Li Z H, Zhuang B Y, et al. Enrofloxacin perturbs nitrogen transformation and assimilation in rice seedlings (Oryza sativa L.)[J]. The Science of the Total Environment, 2022, 802:149900
Zhao H M, Huang H B, Du H, et al. Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis)[J]. Journal of Hazardous Materials, 2018, 349:252-261
Gomes M P, Bicalho E M, Smedbol É, et al. Glyphosate can decrease germination of glyphosate-resistant soybeans[J]. Journal of Agricultural and Food Chemistry, 2017, 65(11):2279-2286
Hénault-Ethier L, Lucotte M, Moingt M, et al. Herbaceous or Salix miyabeana 'SX64' narrow buffer strips as a means to minimize glyphosate and aminomethylphosphonic acid leaching from row crop fields[J]. The Science of the Total Environment, 2017, 598:1177-1186
Li N, Wang K, Lv Y, et al. Silicon enhanced the resistance of Chinese cabbage (Brassica rapa L. ssp. pekinensis) to ofloxacin on the growth, photosynthetic characteristics and antioxidant system[J]. Plant Physiology and Biochemistry, 2022, 175:44-57
Wang R, Wang J, Wang J H, et al. Growth inhibiting effects of four antibiotics on cucumber, rape and Chinese cabbage[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(1):187-192
鲍陈燕, 顾国平, 章明奎. 兽用抗生素胁迫对水芹生长及其抗生素积累的影响[J]. 土壤通报, 2016, 47(1):164-172 Bao C Y, Gu G P, Zhang M K. Effects of veterinary antibiotics stress on growth and antibiotics accumulation of Oenanthe javanica DC[J]. Chinese Journal of Soil Science, 2016, 47(1):164-172(in Chinese)
Yu Q X, Ahammed G J, Zhou Y H, et al. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem[J]. Scientific Reports, 2017, 7:43096
Xie X J, Zhou Q X, Bao Q H, et al. Genotoxicity of tetracycline as an emerging pollutant on root meristem cells of wheat (Triticum aestivum L.)[J]. Environmental Toxicology, 2011, 26(4):417-423
Tong X N, Wang X Z, He X J, et al. Effects of antibiotics on nitrogen uptake of four wetland plant species grown under hydroponic culture[J]. Environmental Science and Pollution Research International, 2019, 26(11):10621-10630
Panja S, Sarkar D, Li K F, et al. Uptake and transformation of ciprofloxacin by vetiver grass (Chrysopogon zizanioides)[J]. International Biodeterioration & Biodegradation, 2019, 142:200-210
Tasho R P, Shin W T, Cho J Y. Acclimatization of Pisum sativum L., grown in soil contaminated with veterinary antibiotics, an attribute of dose hormetic response of root metabolites[J]. The Science of the Total Environment, 2018, 635:364-374
Liu X N, Lv Y, Gao S, et al. Ofloxacin induces etiolation in Welsh onion leaves[J]. Chemosphere, 2021, 267:128918
Zhang Z H, Liu X N, Lv Y, et al. Grafting resulting in alleviating tomato plant oxidative damage caused by high levels of ofloxacin[J]. Environmental Pollution, 2021, 286:117331
Zhu L M, Xu H T, Xiao W S, et al. Ecotoxicological effects of sulfonamide on and its removal by the submerged plant Vallisneria natans (Lour.) Hara[J]. Water Research, 2020, 170:115354
Khan K Y, Ali B, Zhang S, et al. Effects of antibiotics stress on growth variables, ultrastructure, and metabolite pattern of Brassica rapa ssp. chinensis[J]. The Science of the Total Environment, 2021, 778:146333
Chen J F, Xu H L, Sun Y B, et al. Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China[J]. The Science of the Total Environment, 2016, 543(Pt A):197-205
Zhang H, Li X N, Yang Q X, et al. Plant growth, antibiotic uptake, and prevalence of antibiotic resistance in an endophytic system of pakchoi under antibiotic exposure[J]. International Journal of Environmental Research and Public Health, 2017, 14(11):1336
Rydzyński D, Piotrowicz-Cieślak A I, Grajek H, et al. Instability of chlorophyll in yellow lupin seedlings grown in soil contaminated with ciprofloxacin and tetracycline[J]. Chemosphere, 2017, 184:62-73
Hammad H M, Zia F, Bakhat H F, et al. Uptake and toxicological effects of pharmaceutical active compounds on maize[J]. Agriculture, Ecosystems & Environment, 2018, 258:143-148
Pierattini E C, Francini A, Raffaelli A, et al. Morpho-physiological response of Populus alba to erythromycin:A timeline of the health status of the plant[J]. The Science of the Total Environment, 2016, 569-570:540-547
迟荪琳, 王卫中, 徐卫红, 等. 四环素类抗生素对不同蔬菜生长的影响及其富集转运特征[J]. 环境科学, 2018, 39(2):935-943 Chi S L, Wang W Z, Xu W H, et al. Effects of tetracycline antibiotics on growth and characteristics of enrichment and transformation in two vegetables[J]. Environmental Science, 2018, 39(2):935-943(in Chinese)
Chen S, Zhang W, Li J Y, et al. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum)[J]. Environmental Pollution, 2020, 263(Pt A):114554
Xiong J Q, Kurade M B, Jeon B H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris[J]. Chemical Engineering Journal, 2017, 313:1251-1257
Wan J J, Guo P Y, Peng X F, et al. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae[J]. Journal of Hazardous Materials, 2015, 283:778-786
Wan J J, Guo P Y, Zhang S X. Response of the cyanobacterium Microcystis flos-aquae to levofloxacin[J]. Environmental Science and Pollution Research, 2014, 21(5):3858-3865
Migliore L, Civitareale C, Brambilla G, et al. Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L.)[J]. Agriculture, Ecosystems & Environment, 1997, 65(2):163-168
Kurade M B, Kim J R, Govindwar S P, et al. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris:Microalgal tolerance to xenobiotic pollutants and metabolism[J]. Algal Research, 2016, 20:126-134
Kurade M B, Xiong J Q, Govindwar S P, et al. Uptake and biodegradation of emerging contaminant sulfamethoxazole from aqueous phase using Ipomoea aquatica[J]. Chemosphere, 2019, 225:696-704
Yan Y, Xu X G, Shi C F, et al. Ecotoxicological effects and accumulation of ciprofloxacin in Eichhornia crassipes under hydroponic conditions[J]. Environmental Science and Pollution Research International, 2019, 26(29):30348-30355
Gomes M P, de Brito J C M, Bicalho E M, et al. Ciprofloxacin vs. temperature:Antibiotic toxicity in the free-floating liverwort Ricciocarpus natans from a climate change perspective[J]. Chemosphere, 2018, 202:410-419
Gomes M P, Gonçalves C A, de Brito J C M, et al. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.):Implications for energy metabolism and antibiotic-uptake ability[J]. Journal of Hazardous Materials, 2017, 328:140-149
Gomes M P, de Brito J C M, Carvalho Carneiro M M L, et al. Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin:Impacts on biofertilization[J]. Environmental Pollution, 2018, 232:293-299
Yan Y, Chen Y, Xu X G, et al. Effects and removal of the antibiotic sulfadiazine by Eichhornia crassipes:Potential use for phytoremediation[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(2):342-347
Ahmadabadi Z, Zarei M, Yasrebi J, et al. The effect of bio/organic fertilizers on the phytotoxicity of sulfadiazine to Echium amoenum in a calcareous soil[J]. Ecotoxicology and Environmental Safety, 2021, 208:111408
Gao P J, Zuo Z J, Wu X B, et al. Effects of cycloheximide on photosynthetic abilities, reflectance spectra and fluorescence emission spectra in Phyllostachys edulis[J]. Trees, 2016, 30(3):719-732
Deng C N, Zhang D Y, Pan X L. Toxic effects of erythromycin on photosystem Ⅰ and Ⅱ in Microcystis aeruginosa[J]. Photosynthetica, 2014, 52(4):574-580
Liu B Y, Nie X P, Liu W Q, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum[J]. Ecotoxicology and Environmental Safety, 2011, 74(4):1027-1035
Copaciu F, Opriş O, Niinemets Ü, et al. Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves[J]. Water, Air, and Soil Pollution, 2016, 227(6):196
Opriş O, Copaciu F, Soran M L, et al. Content of carotenoids, violaxanthin and neoxanthin in leaves of Triticum aestivum exposed to persistent environmental pollutants[J]. Molecules, 2021, 26(15):4448
Devireddy A R, Inupakutika M A, Willmon D, et al. Veterinary antibiotics influence trigonelline biosynthesis and plant growth in Arachis hypogaea L[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2017, 67(3):245-251
Evans-Roberts K M, Mitchenall L A, Wall M K, et al. DNA gyrase is the target for the quinolone drug ciprofloxacin in Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2016, 291(7):3136-3144
Wall M K, Mitchenall L A, Maxwell A. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(20):7821-7826
Ahmad P, Abdel Latef A A, Hashem A, et al. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea[J]. Frontiers in Plant Science, 2016, 7:347
Ding W, Hudson L G, Liu K J. Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes[J]. Molecular and Cellular Biochemistry, 2005, 279(1):105-112
Pilati S, Brazzale D, Guella G, et al. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin[J]. BMC Plant Biology, 2014, 14:87
Yin Y, Jia H X, Sun Y Y, et al. Bioaccumulation and ROS generation in liver of Carassius auratus, exposed to phenanthrene[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2007, 145(2):288-293
Lin R Z, Wang X R, Luo Y, et al. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.)[J]. Chemosphere, 2007, 69(1):89-98
Nimptsch J, Pflugmacher S. Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense[J]. Chemosphere, 2007, 66(4):708-714
Scandalios J G. Oxidative stress:Molecular perception and transduction of signals triggering antioxidant gene defenses[J]. Brazilian Journal of Medical and Biological Research, 2005, 38(7):995-1014
Song G L, Gao Y, Wu H, et al. Physiological effect of anatase TiO2 nanoparticles on Lemna minor[J]. Environmental Toxicology and Chemistry, 2012, 31(9):2147-2152
Pejić S, Todorović A, Stojiljković V, et al. Antioxidant enzymes and lipid peroxidation in endometrium of patients with polyps, myoma, hyperplasia and adenocarcinoma[J]. Reproductive Biology and Endocrinology, 2009, 7:149
Gao S, Ouyang C, Wang S, et al. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings[J]. Plant, Soil and Environment, 2008, 54(9):374-381
Yong Z, Tang H R, Ya L. Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress[J]. World Journal of Agricultural Sciences, 2008, 4(4):458-462
Nie X P, Liu B Y, Yu H J, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata[J]. Environmental Pollution, 2013, 172:23-32
Liu Y, Guan Y T, Gao B Y, et al. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2012, 86:23-30
Schmitt M A, Evans S D, Randall G W. Effect of liquid manure application methods on soil nitrogen and corn grain yields[J]. Journal of Production Agriculture, 1995, 8(2):186-189