基于组合指数法评估抗生素二元混合物对青海弧菌Q67的时间依赖联合毒性
Assessment of Time-dependent Combined Toxicity of Antibiotic Binary Mixtures to Vibrio qinghaiensis sp.-Q67 Based on Combination Index Method
-
摘要: 污染物在环境混合暴露是一种普遍现象。然而,目前对污染物时间毒性及相互作用大多只考虑了相互作用类型,缺乏对于相互作用大小及出现频率的研究。因此,本研究以水环境中普遍存在的3种不同类别抗生素恩诺沙星(enrofloxacin, ENR)、氯霉素(chloramphenicols, CMP)和红霉素(erythromycin, ETM)为目标污染物,以青海弧菌Q67为指示生物,运用直接均分射线法(equipartition ray, EquRay)设计3个二元混合体系共15条混合物射线,应用时间依赖微板毒性分析法测定了3种抗生素及其二元混合物的时间-浓度-效应数据,并采用组合指数(combination index, CI)分析混合物的毒性作用随暴露时间变化趋势,并分析加和、协同和拮抗3种相互作用出现的频率,探究抗生素混合物毒性相互作用变化规律。结果表明,随暴露时间的延长,3种抗生素对Q67的毒性逐渐增强,ENR暴露在8~12 h时,对Q67存在明显的Hormesis,最大刺激效应为-102.12%。所有的二元混合物都呈现明显的时间毒性,且高浓度区域时间毒性变化较为明显,不同于单一毒性,15条混合射线均未出现Hormesis。抗生素混合物毒性相互作用类型及作用程度与组分浓度比、浓度大小及暴露时间均有关,其中暴露浓度影响最大。通过利用混合物相互作用在指定效应下的出现频率分析,在这3种混合体系中,加和作用出现的频率最高,拮抗作用出现的频率最低,混合物暴露在低浓度区域多呈加和作用,高浓度区域多呈协同作用。Abstract: Mixed exposure to pollutants in the environment is a common phenomenon. However, most of the current studies focusing on the temporal toxicity and interactions of various contaminants have only considered the types of interaction, and studies on the magnitudes and frequencies of their interactions are still lacking. Therefore, three different antibiotics classes including enrofloxacin (ENR), chloramphenicol (CMP), and erythromycin (ETM) were selected in this study as target contaminants, due to the fact that these compounds are commonly observed in the aqueous environment. Vibrio qinghaiensis sp.-Q67 (Q67 was used below) was used as an indicator organism, and a total of 15 mixture rays were designed based on the three binary mixture systems using the direct equipartition ray (EquRay). The time-dependent microplate toxicity analysis was also applied to determine the time-concentration-effect data of the three antibiotics. Furthermore, their binary mixtures were measured by time-dependent microplate toxicity analysis, and the trends of the toxic effects of these mixtures with exposure times were analyzed by using the combination index (CI). In addition, the frequencies of the three interactions including additive action, synergism, and antagonism were analyzed to investigate the change laws of the toxic interactions of the antibiotic mixtures. The results showed that the toxicity of the three antibiotics on Q67 gradually increased with the extension of the exposure time, and there was a significant Hormesis on Q67 at times of 8 h and 12 h of ENR exposure, with the maximum stimulation point of -102.12%. The binary mixtures results showed significant temporal toxicity, and the changes of temporal toxicity were more obvious at high concentrations. This result was different with that observed in the toxicity of single compounds, while no Hormesis was observed for any of the 15 mixed rays. Significant correlations were observed among the types of antibiotic mixture toxic interactions and the degree of action, and the component concentration ratio, concentration size, and exposure time. Among them, exposure concentration showed the greatest effect. The frequencies of the occurrence of mixture interactions at the specified effect were analyzed. In the three mixed systems, the highest frequency of additive interactions and the lowest frequency of antagonistic interactions were all observed, while the mixture systems showed more additive interactions at the low concentration and more synergistic interactions at the high concentration.
-
Key words:
- enrofloxacin /
- chloramphenicol /
- erythromycin /
- Vibrio qinghaiensis sp.-Q67 /
- combined toxicity /
- interaction
-
-
Pan Y, Dong J Y, Wan L L, et al. Norfloxacin pollution alters species composition and stability of plankton communities[J]. Journal of Hazardous Materials, 2020, 385: 121625 Du J, Zhao H X, Liu S S, et al. Antibiotics in the coastal water of the South Yellow Sea in China: Occurrence, distribution and ecological risks[J]. The Science of the Total Environment, 2017, 595: 521-527 Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6): 1202-1211 Qin L T, Pang X R, Zeng H H, et al. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian Karst wetland in Guilin, China[J]. The Science of the Total Environment, 2020, 708: 134552 Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6): 822-828 Yang W F, Gao P, Li H X, et al. Mechanism of the inhibition and detoxification effects of the interaction between nanoplastics and microalgae Chlorella pyrenoidosa[J]. The Science of the Total Environment, 2021, 783: 146919 Fan Y, Liu S S, Qu R, et al. Polymyxin B sulfate inducing time-dependent antagonism of the mixtures of pesticide, ionic liquids, and antibiotics to Vibrio qinghaiensis sp.-Q67[J]. RSC Advances, 2017, 7(10): 6080-6088 Xiong J Q, Kim S J, Kurade M B, et al. Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: Toxicity, biodegradation, and metabolic fate[J]. Journal of Hazardous Materials, 2019, 370: 138-146 Backhaus T, Scholze M, Grimme L H. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri[J]. Aquatic Toxicology, 2000, 49(1-2): 49-61 Park S, Choi K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems[J]. Ecotoxicology, 2008, 17(6): 526-538 农琼媛, 覃礼堂, 莫凌云, 等. 抗生素与三唑类杀菌剂混合物对羊角月牙藻的长期毒性相互作用研究[J]. 生态毒理学报, 2019, 14(4): 140-149 Nong Q Y, Qin L T, Mo L Y, et al. The toxic interactions of long-term effects involving antibiotics and triazole fungicides on Selenastrum capricornutum[J]. Asian Journal of Ecotoxicology, 2019, 14(4): 140-149(in Chinese)
丁婷婷, 董欣琪, 张瑾, 等. 3种氨基糖苷类抗生素对水生生物的时间依赖联合毒性作用比较[J]. 生态毒理学报, 2018, 13(1): 126-137 Ding T T, Dong X Q, Zhang J, et al. Comparison of time-dependent joint toxicity interaction of three aminoglycosides antibiotics between two aquatic organisms[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 126-137(in Chinese)
Zou X M, Lin Z F, Deng Z Q, et al. The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: Differences between the acute and chronic mixture toxicity mechanisms[J]. Chemosphere, 2012, 86(1): 30-35 Escher B, Braun G, Zarfl C. Exploring the concepts of concentration addition and independent action using a linear low-effect mixture model[J]. Environmental Toxicology and Chemistry, 2020, 39(12): 2552-2559 Mo L Y, Zheng M Y, Qin M, et al. Quantitative characterization of the toxicities of Cd-Ni and Cd-Cr binary mixtures using combination index method[J]. BioMed Research International, 2016, 2016: 4158451 李恺, 刘树深, 屈锐. 组合指数在环境混合物联合毒性研究中的初步应用[J]. 生态毒理学报, 2017, 12(3): 62-71 Li K, Liu S S, Qu R. Application of the combination index in the assessment of combined toxicity of environmental mixture[J]. Asian Journal of Ecotoxicology, 2017, 12(3): 62-71(in Chinese)
Chou T C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies[J]. Pharmacological Reviews, 2006, 58(3): 621-681 González-Pleiter M, Gonzalo S, Rodea-Palomares I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment[J]. Water Research, 2013, 47(6): 2050-2064 Chen C, Wang Y H, Qian Y Z, et al. The synergistic toxicity of the multiple chemical mixtures: Implications for risk assessment in the terrestrial environment[J]. Environment International, 2015, 77: 95-105 Kovalakova P, Cizmas L, McDonald T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review[J]. Chemosphere, 2020, 251: 126351 杨灿, 沈根祥, 胡双庆, 等. 氯霉素对大型溞的急性和慢性毒性效应研究[J]. 生态毒理学报, 2018, 13(5): 248-255 Yang C, Shen G X, Hu S Q, et al. Acute and chronic toxicity of chloramphenicol to Daphnia magna[J]. Asian Journal of Ecotoxicology, 2018, 13(5): 248-255(in Chinese)
王林芳. 汾河流域典型抗生素污染特征及归趋研究[D]. 太原: 山西大学, 2021: 19-30 Dou R N, Liu S S, Mo L Y, et al. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos[J]. Environmental Science and Pollution Research, 2011, 18(5): 734-742 张煜, 王小兵, 胡松学, 等. 青海弧菌Q67冻干粉急性毒性测试方法研究[J]. 安徽农业科学, 2014, 42(15): 4746-4748 Zhang Y, Wang X B, Hu S X, et al. Study on the method of using Vibrio qinghaiensis sp. Q67 freeze-dried powder to detect acute toxicity[J]. Journal of Anhui Agricultural Sciences, 2014, 42(15): 4746-4748(in Chinese)
Mo L Y, Liu S S, Zhu Y N, et al. Combined toxicity of the mixtures of phenol and aniline derivatives to Vibrio qinghaiensis sp.-Q67[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(4): 473-479 Liu S S, Song X Q, Liu H L, et al. Combined photobacterium toxicity of herbicide mixtures containing one insecticide[J]. Chemosphere, 2009, 75(3): 381-388 朱祥伟, 刘树深, 张琼, 等. 杀虫剂及抗生素对发光菌的短期毒性与长期毒性[J]. 环境科学研究, 2009, 22(5): 589-594 Zhu X W, Liu S S, Zhang Q, et al. Short-term and long-term toxicities of selected insecticides and antibiotics on photobacteria[J]. Research of Environmental Sciences, 2009, 22(5): 589-594(in Chinese)
Scholze M, Boedeker W, Faust M, et al. A general best-fit method for concentration-response curves and the estimation of low-effect concentrations[J]. Environmental Toxicology and Chemistry, 2001, 20(2): 448-457 Cedergreen N, Ritz C, Streibig J C. Improved empirical models describing hormesis[J]. Environmental Toxicology and Chemistry, 2005, 24(12): 3166-3172 Schreiber T, Netsch C, Eschweiler S, et al. Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system[J]. Energy, 2021, 230: 120894 Liu L, Liu S S, Yu M, et al. Application of the combination index integrated with confidence intervals to study the toxicological interactions of antibiotics and pesticides in Vibrio qinghaiensis sp.-Q67[J]. Environmental Toxicology and Pharmacology, 2015, 39(1): 447-456 曾莎莎, 梁延鹏, 覃礼堂, 等. 有机磷农药对蛋白核小球藻的毒性相互作用研究[J]. 生态毒理学报, 2019, 14(4): 121-129 Zeng S S, Liang Y P, Qin L T, et al. Toxicological interactions of organophosphorus pesticides mixtures to Chlorella pyrenoidosa[J]. Asian Journal of Ecotoxicology, 2019, 14(4): 121-129(in Chinese)
Zhang J, Tao M T, Song C C, et al. Time-dependent synergism of five-component mixture systems of aminoglycoside antibiotics to Vibrio qinghaiensis sp.-Q67 induced by a key component[J]. RSC Advances, 2020, 10(21): 12365-12372 陈琼. 基于两种指示生物的部分药物及其混合物时间毒性研究[D]. 合肥: 安徽建筑大学, 2016: 41-42 Wang T, Zhang J, Tao M T, et al. Quantitative characterization of toxicity interaction within antibiotic-heavy metal mixtures on Chlorella pyrenoidosa by a novel area-concentration ratio method[J]. The Science of the Total Environment, 2021, 762: 144180 Koppel D J, Adams M S, King C K, et al. Chronic toxicity of an environmentally relevant and equitoxic ratio of five metals to two Antarctic marine microalgae shows complex mixture interactivity[J]. Environmental Pollution, 2018, 242: 1319-1330 Zhang J, Ding T T, Dong X Q, et al. Time-dependent and Pb-dependent antagonism and synergism towards Vibrio qinghaiensis sp.-Q67 within heavy metal mixtures[J]. RSC Advances, 2018, 8(46): 26089-26098 Rodea-Palomares I, Petre A, Boltes K, et al. Application of the combination index (CI)-isobologram equation to study the toxicological interactions of lipid regulators in two aquatic bioluminescent organisms[J]. Water Research, 2010, 44(2): 427-438 莫凌云, 梁丽营, 覃礼堂, 等. 定性与定量评估4种重金属及2种农药混合物对费氏弧菌的毒性相互作用[J]. 生态毒理学报, 2018, 13(1): 251-260 Mo L Y, Liang L Y, Qin L T, et al. Qualitative and quantitative assessment for the toxicity interaction of mixtures of four heavy metals and two pesticides on Vibrio fischeri[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 251-260(in Chinese)
-

计量
- 文章访问数: 1357
- HTML全文浏览数: 1357
- PDF下载数: 121
- 施引文献: 0