2种氟喹诺酮类抗生素在水产养殖区沉积物上的吸附和解吸行为研究
Adsorption and Desorption Behavior of Two Fluoroquinolones Antibiotics on Aquaculture Sediments
-
摘要: 为了了解养殖塘沉积物对抗生素的吸附行为,选取恩诺沙星(enrofloxacin, ENR)和诺氟沙星(norfloxacin, NOR)这2种典型的氟喹诺酮类抗生素(fluoroquinolones, FQs),研究了它们在养殖塘沉积物上的吸附/解吸特征及其影响因素。结果表明,ENR和NOR在养殖塘沉积物上的吸附过程较快,16 h已达到平衡,吸附常数(Kd)能达到3 213.72 L·kg-1和9 231.79 L·kg-1,Langmuir和Freundlich均能够较好地拟合沉积物对ENR和NOR的等温吸附过程,解吸过程存在明显的滞后现象;ENR和NOR在沉积物上的吸附量与pH整体呈负相关,解吸量与pH呈正相关;不同沉积物中有机质对ENR和NOR的吸附均有较大的贡献,金属氧化物中铁氧化物对ENR和NOR的吸附贡献明显高于锰氧化物;共存离子中,除Zn2+外,随着离子强度的增加,吸附量都呈现逐渐减少的趋势,且二价离子存在时抗生素的吸附常数明显低于单价离子,解吸均表现为随着吸附率的增加而减少。本研究对抗生素的环境风险评估和污染控制具有重要的意义。Abstract: In order to understand the adsorption behavior of antibiotics on the sediment of aquaculture ponds, this research selected two typical fluoroquinolones (FQs), enrofloxacin (ENR) and norfloxacin (NOR), to study their adsorption/desorption characteristics and the influencing factors. Our results showed that the adsorption of ENR and NOR reached equilibrium from the 16th hour, and the adsorption constant (Kd) reached 3 213.72 L·kg-1 and 9 231.79 L·kg-1. Both Langmuir and Freundlich could well fit the isothermal adsorption process of ENR and NOR on sediments, and obvious hysteresis were observed during the desorption processes. An negative correlation was detected between the adsorption capacities of the two antibiotics and the pH, while an positive correlation was detected between the desorption capacities and the pH. The organic matters in different sediments contributed greatly to the adsorption of ENR and NOR. It has been found that the adsorption contribution rate of iron oxide to ENR and NOR was significantly higher than that of manganese oxide. Except Zn2+, for other examined coexisting ions, their adsorption capacities decrease with the increase of the ionic strength. During co-existence, the adsorption constant of divalent ions was obviously lower than that of monovalent ions. According to the desorption regularity, it is found that the desorption rates decrease with the increase of the adsorption rates. This study is of great significance for environmental risk assessment and pollution control of antibiotics.
-
Key words:
- fluoroquinolones /
- sediment /
- adsorption /
- desorption
-
-
Liu X, Steele J C, Meng X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review[J]. Environmental Pollution, 2017, 223: 161-169 陈笑雪, 王智源, 管仪庆, 等. 淡水环境中抗生素抗性基因的来源、归趋和风险[J]. 生态毒理学报, 2021, 16(3): 14-27 Chen X X, Wang Z Y, Guan Y Q, et al. Source, fate and risk of antibiotic resistance genes in freshwater environment[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 14-27(in Chinese)
Kumar M, Jaiswal S, Sodhi K K, et al. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance[J]. Environment International, 2019, 124: 448-461 Zhang R L, Pei J Y, Zhang R J, et al. Occurrence and distribution of antibiotics in mariculture farms, estuaries and the coast of the Beibu Gulf, China: Bioconcentration and diet safety of seafood[J]. Ecotoxicology and Environmental Safety, 2018, 154: 27-35 李贞金, 张洪昌, 沈根祥, 等. 水产养殖水、沉积物中抗生素检测方法优化及残留特征研究[J]. 生态毒理学报, 2020, 15(1): 209-219 Li Z J, Zhang H C, Shen G X, et al. Optimization of antibiotic detection methods and residual characteristics in aquaculture water and sediment[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 209-219(in Chinese)
Wang S L, Wang H. Adsorption behavior of antibiotic in soil environment: A critical review[J]. Frontiers of Environmental Science & Engineering, 2015, 9(4): 565-574 Picó Y, Andreu V. Fluoroquinolones in soil: Risks and challenges[J]. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1287-1299 孟磊, 杨兵, 薛南冬. 氟喹诺酮类抗生素环境行为及其生态毒理研究进展[J]. 生态毒理学报, 2015, 10(2): 76-88 Meng L, Yang B, Xue N D. A review on environmental behaviors and ecotoxicology of fluoroquinolone antibiotics[J]. Asian Journal of Ecotoxicology, 2015, 10(2): 76-88(in Chinese)
Huang Y Q, Wang Y, Huang Y Z, et al. Impact of sediment characteristics on adsorption behavior of typical antibiotics in Lake Taihu, China[J]. The Science of the Total Environment, 2020, 718: 137329 Jiang Y F, Zhang Q, Deng X R, et al. Single and competitive sorption of sulfadiazine and chlortetracycline on loess soil from Northwest China[J]. Environmental Pollution, 2020, 263(Pt A): 114650 高俊红, 谢晓芸, 张涵瑜, 等. 三种氟喹诺酮类抗生素在黄河沉积物中的吸附行为[J]. 兰州大学学报: 自然科学版, 2016, 52(5): 593-598 Gao J H, Xie X Y, Zhang H Y, et al. Adsorption behaviors of three fluoroquinolone antibiotics onto Yellow River sediments[J]. Journal of Lanzhou University: Natural Sciences, 2016, 52(5): 593-598(in Chinese)
Li J, Zhang H. Factors influencing adsorption and desorption of trimethoprim on marine sediments: Mechanisms and kinetics[J]. Environmental Science and Pollution Research International, 2017, 24(27): 21929-21937 van Doorslaer X, Dewulf J, van Langenhove H, et al. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants[J]. The Science of the Total Environment, 2014, 500-501: 250-269 Leal R M, Alleoni L R, Tornisielo V L, et al. Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils[J]. Chemosphere, 2013, 92(8): 979-985 李宗宸. 河流沉积物吸附四环素类抗生素的行为规律研究[D]. 上海: 东华大学, 2017: 16 Li Z C. Study on the adsorption behaviors and rules of tetracyclines on river sediment[D]. Shanghai: Donghua University, 2017: 16(in Chinese) Li J, Zhang H. Adsorption-desorption of oxytetracycline on marine sediments: Kinetics and influencing factors[J]. Chemosphere, 2016, 164: 156-163 Rath S, Fostier A H, Pereira L A, et al. Sorption behaviors of antimicrobial and antiparasitic veterinary drugs on subtropical soils[J]. Chemosphere, 2019, 214: 111-122 Riaz L, Mahmood T, Khalid A, et al. Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption and toxicity in soil[J]. Chemosphere, 2018, 191: 704-720 Xu X R, Li X Y. Sorption and desorption of antibiotic tetracycline on marine sediments[J]. Chemosphere, 2010, 78(4): 430-436 Braida W J, Pignatello J J, Lu Y F, et al. Sorption hysteresis of benzene in charcoal particles[J]. Environmental Science & Technology, 2003, 37(2): 409-417 Vasudevan D, Bruland G L, Torrance B S, et al. pH-dependent ciprofloxacin sorption to soils: Interaction mechanisms and soil factors influencing sorption[J]. Geoderma, 2009, 151(3-4): 68-76 Gu X Y, Tan Y Y, Tong F, et al. Surface complexation modeling of coadsorption of antibiotic ciprofloxacin and Cu(Ⅱ) and onto goethite surfaces[J]. Chemical Engineering Journal, 2015, 269: 113-120 陈蕾, 郑西来, 王婷, 等. 表层沉积物主要矿化组分对Mn(Ⅱ)的吸附特性与贡献[J]. 环境科学研究, 2014, 27(11): 1345-1350 Chen L, Zheng X L, Wang T, et al. Characteristics and contribution of major mineralized components of the surface sediment to Mn(Ⅱ) adsorption[J]. Research of Environmental Sciences, 2014, 27(11): 1345-1350(in Chinese)
提清清, 高增文, 季慧慧, 等. 抗生素在土壤中的吸附行为研究进展[J]. 土壤, 2017, 49(3): 437-445 Ti Q Q, Gao Z W, Ji H H, et al. Adsorption of antibiotics in soils: A review[J]. Soils, 2017, 49(3): 437-445(in Chinese)
Aristilde L, Sposito G. Binding of ciprofloxacin by humic substances: A molecular dynamics study[J]. Environmental Toxicology and Chemistry, 2010, 29(1): 90-98 Martínez-Mejía M J, Sato I, Rath S. Sorption mechanism of enrofloxacin on humic acids extracted from Brazilian soils[J]. Environmental Science and Pollution Research, 2017, 24(19): 15995-16006 郭丽, 王淑平, 周志强, 等. 环丙沙星在深浅两层潮土层中吸附-解吸特性研究[J]. 农业环境科学学报, 2014, 33(12): 2359-2367 Guo L, Wang S P, Zhou Z Q, et al. Adsorption and desorption of ciprofloxacin by surface and subsurface soils of ustic cambosols in China[J]. Journal of Agro-Environment Science, 2014, 33(12): 2359-2367(in Chinese)
Teixidó M, Medeiros J, Beltrán J L, et al. Sorption of enrofloxacin and ciprofloxacin in agricultural soils: Effect of organic matter[J]. Adsorption Science & Technology, 2014, 32(2-3): 153-163 Guo X Y, Luo L, Ma Y B, et al. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters[J]. Journal of Hazardous Materials, 2010, 173(1-3): 130-136 Pan B, Wang P, Wu M, et al. Sorption kinetics of ofloxacin in soils and mineral particles[J]. Environmental Pollution, 2012, 171: 185-190 Figueroa-Diva R A, Vasudevan D, MacKay A A. Trends in soil sorption coefficients within common antimicrobial families[J]. Chemosphere, 2010, 79(8): 786-793 Guo X T, Tu B, Ge J H, et al. Sorption of tylosin and sulfamethazine on solid humic acid[J]. Journal of Environmental Sciences (China), 2016, 43: 208-215 Wang S L, Wang H. Adsorption behavior of antibiotic in soil environment: A critical review[J]. Frontiers of Environmental Science & Engineering, 2015, 9(4): 565-574 Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science & Technology, 2010, 44(9): 3468-3473 Urbaniak B, Kokot Z J. Analysis of the factors that significantly influence the stability of fluoroquinolone-metal complexes[J]. Analytica Chimica Acta, 2009, 647(1): 54-59 Zhao Z L, Wang J, Han Y, et al. Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture[J]. Environmental Pollution, 2017, 220(Pt B): 909-918 Chen G C, Shan X Q, Pei Z G, et al. Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead[J]. Journal of Hazardous Materials, 2011, 188(1-3): 156-163 Wang Y S, Pei Z G, Shan X Q, et al. Effects of metal cations on sorption-desorption of p-nitrophenol onto wheat ash[J]. Journal of Environmental Sciences (China), 2011, 23(1): 112-118 Graouer-Bacart M, Sayen S, Guillon E. Adsorption of enrofloxacin in presence of Zn(Ⅱ) on a calcareous soil[J]. Ecotoxicology and Environmental Safety, 2015, 122: 470-476 -

计量
- 文章访问数: 1419
- HTML全文浏览数: 1419
- PDF下载数: 131
- 施引文献: 0