场地实际重金属复合污染土壤生态毒性效应定量评价

马喆, 王美娥, 姜瑢, 陈卫平. 2022: 场地实际重金属复合污染土壤生态毒性效应定量评价, 生态毒理学报, (4): 367-377. doi: 10.7524/AJE.1673-5897.20211101001
引用本文: 马喆, 王美娥, 姜瑢, 陈卫平. 2022: 场地实际重金属复合污染土壤生态毒性效应定量评价, 生态毒理学报, (4): 367-377. doi: 10.7524/AJE.1673-5897.20211101001
Ma Zhe, Wang Meie, Jiang Rong, Chen Weiping. 2022: Quantitative Evaluation of Ecological Toxicity Effect of Real Heavy Metal Combined Pollution in Site Soil, Asian Journal of Ecotoxicology, (4): 367-377. doi: 10.7524/AJE.1673-5897.20211101001
Citation: Ma Zhe, Wang Meie, Jiang Rong, Chen Weiping. 2022: Quantitative Evaluation of Ecological Toxicity Effect of Real Heavy Metal Combined Pollution in Site Soil, Asian Journal of Ecotoxicology, (4): 367-377. doi: 10.7524/AJE.1673-5897.20211101001

场地实际重金属复合污染土壤生态毒性效应定量评价

    作者简介: 马喆(1994—),女,硕士研究生,研究方向为生态毒理学,E-mail:mazhe18@mails.ucas.ac.cn .
    通讯作者: 王美娥, mewang@rcees.ac.cn
  • 基金项目:

    国家重点研发计划项目(2018YFC1800505)

  • 中图分类号: X171.5

Quantitative Evaluation of Ecological Toxicity Effect of Real Heavy Metal Combined Pollution in Site Soil

    Corresponding author: Wang Meie, mewang@rcees.ac.cn
  • 摘要: 场地实际重金属复合污染土壤生态效应定量评价是场地生态风险评估中的难点,本研究耦合“自上而下”和“自下而上”复合污染联合效应评价的思路,构建了由“有效生物标志物响应筛选-主导污染物识别-不同暴露类型/污染物种类联合效应估算”3个步骤组成的场地实际重金属复合污染土壤生态效应定量评价方法,并以江苏省某废弃电镀污染场地为研究对象,采用蚯蚓土壤微宇宙培养实验进行了方法验证。以蚯蚓组织丙二醛(MDA)含量、金属硫蛋白(MT)含量、过氧化氢酶(CAT)活性、超氧化物歧化酶(SOD)活性和还原型谷胱甘肽(GSH)含量等生物标志物为效应终点的分析结果表明,蚯蚓对该场地的主要土壤重金属污染物包括Cd、Cu、Zn、Ni、Pb和Cr的富集能力表现为Cd>Cu>Zn>Ni>Pb>Cr;主成分分析结果表明,GSH含量、CAT活性和MDA含量为有效生物标志物,重金属Cd和Zn为主导污染物。GSH含量变化与土壤Cd总量及Zn的DTPA提取态含量之间存在多元线性关系;蚯蚓MDA含量变化能够通过土壤Cd的DTPA提取态含量进行预测;CAT活性变化能够通过Zn的土壤总量及蚯蚓生物累积量进行预测。针对场地实际污染土壤的性质及污染特征,对3类有效生物标志物响应的半效应浓度(half effect dose,EC50)估算的结果表明,3类有效生物标志物的敏感性从高到低的顺序为:GSH>CAT>MDA;不同元素以及不同类型暴露之间(如,与GSH含量变化对应的土壤总Cd与DTPA-Zn),以及同一元素不同暴露之间(如,与CAT活性变化对应的土壤总Zn与蚯蚓组织生物累积Zn)都有可能存在交互作用,而这些污染物暴露之间不存在暴露量变化的相关性。以上结果表明,采用多元统计分析手段,通过有效生物标志物响应、主导污染物的筛选以及联合效应估算,能够实现野外实际土壤重金属复合污染,生态效应的定量评价。
  • 加载中
  • 骆永明. 中国污染场地修复的研究进展、问题与展望[J]. 环境监测管理与技术, 2011, 23(3):1-6

    Luo Y M. Contaminated site remediation in China:Progresses, problems and prospects[J]. The Administration and Technique of Environmental Monitoring, 2011, 23(3):1-6(in Chinese)

    中华人民共和国环境保护部和国土资源部. 国土壤污染状况调查公报[J]. 中国环保产业, 2014(5):10-11
    陈志良, 赵述华, 周建民, 等. 典型电镀污染场地重金属污染特征与生态风险评价[J]. 环境污染与防治, 2013, 35(10):1-4

    , 11 Chen Z L, Zhao S H, Zhou J M, et al. Pollution characteristics and ecological risk assessment of heavy metals in contaminated site of a typical electroplating factory[J]. Environmental Pollution & Control, 2013, 35(10):1-4, 11(in Chinese)

    薛成杰, 方战强, 王炜. 电子废物拆解场地复合污染土壤修复技术研究进展[J]. 环境污染与防治, 2021, 43(1):103-108

    Xue C J, Fang Z Q, Wang W. Review on remediation technology of composite polluted soil in electronic waste dismantling site[J]. Environmental Pollution & Control, 2021, 43(1):103-108(in Chinese)

    王美娥, 丁寿康, 郭观林, 等. 污染场地土壤生态风险评估研究进展[J]. 应用生态学报, 2020, 31(11):3946-3958

    Wang M E, Ding S K, Guo G L, et al. Advances in ecological risk assessment of soil in contaminated sites[J]. Chinese Journal of Applied Ecology, 2020, 31(11):3946-3958(in Chinese)

    Beyer J, Petersen K, Song Y, et al. Environmental risk assessment of combined effects in aquatic ecotoxicology:A discussion paper[J]. Marine Environmental Research, 2014, 96:81-91
    Li X Z, Wang M E, Jiang R, et al. Evaluation of joint toxicity of heavy metals and herbicide mixtures in soils to earthworms (Eisenia fetida)[J]. Journal of Environmental Sciences, 2020, 94:137-146
    李勖之. 城市土壤重金属与环草隆复合污染对蚯蚓的生态效应研究[D]. 合肥:中国科学技术大学, 2018:9-10 Li X Z. Ecological effects of combined pollution between heavy metals and siduron on earthworms in urban soils[D]. Hefei:University of Science and Technology of China, 2018:9

    -10(in Chinese)

    Davis B N K, French M C. The accumulation and loss of organochlorine insecticide residues by beetles, worms and slugs in sprayed fields[J]. Soil Biology and Biochemistry, 1969, 1(1):45-55
    郑丽萍, 王国庆, 林玉锁, 等. 贵州省典型矿区土壤重金属污染对蚯蚓的毒性效应评估[J]. 生态毒理学报, 2015, 10(2):258-265

    Zheng L P, Wang G Q, Lin Y S, et al. Evaluation of toxicity effects of heavy metal contaminated soils on earthworm (Eisenia foetida) in a mining area of Guizhou Province[J]. Asian Journal of Ecotoxicology, 2015, 10(2):258-265(in Chinese)

    Li X Z, Wang M E, Chen W P, et al. Ecological risk assessment of polymetallic sites using weight of evidence approach[J]. Ecotoxicology and Environmental Safety, 2018, 154:255-262
    王坤. 蚯蚓对长期重金属污染土壤的生态适应性及其解毒机制[D]. 北京:中国农业大学, 2018:66-86 Wang K. The ecological adaptability and detoxification mechanisms of earthworm in long-term heavy metal contaminated soil[D]. Beijing:China Agricultural University, 2018:66

    -86(in Chinese)

    Beaumelle L, Hedde M, Vandenbulcke F, et al. Relationships between metal compartmentalization and biomarkers in earthworms exposed to field-contaminated soils[J]. Environmental Pollution, 2017, 224:185-194
    颜增光, 何巧力, 李发生. 蚯蚓生态毒理试验在土壤污染风险评价中的应用[J]. 环境科学研究, 2007, 20(1):134-142

    Yan Z G, He Q L, Li F S. The use of earthworm ecotoxicological test in risk assessment of soil contamination[J]. Research of Environmental Sciences, 2007, 20(1):134-142(in Chinese)

    中华人民共和国生态环境部. 建设用地土壤污染状况调查技术导则:HJ 25.1-2019[S]. 北京:中华人民共和国生态环境部, 2019
    中华人民共和国生态环境部. 土壤pH值的测定电位法:HJ 962-2018[S]. 北京:中国环境出版集团, 2018
    International Organization for Standardization (ISO). Soil quality. Determination of organic and total carbon after dry combustion (elementary analysis):ISO 10694-1995[S]. Geneva:ISO, 1995
    中华人民共和国环境保护部. 土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法:HJ 889-2017[S]. 北京:中国环境科学出版社, 2017
    中华人民共和国环境保护部. 土壤8种有效态元素的测定二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法:HJ 804-2016[S]. 北京:中国环境出版集团, 2016
    王美娥, 彭驰, 陈卫平. 宁夏干旱地区工业区对农田土壤重金属累积的影响[J]. 环境科学, 2016, 37(9):3532-3539

    Wang M E, Peng C, Chen W P. Impacts of industrial zone in arid area in Ningxia Province on the accumulation of heavy metals in agricultural soils[J]. Environmental Science, 2016, 37(9):3532-3539(in Chinese)

    国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中多元素的测定:GB 5009.268-2016[S]. 北京:中国标准出版社, 2017
    Zuur A F, Ieno E N, Elphick C S. A protocol for data exploration to avoid common statistical problems[J]. Methods in Ecology and Evolution, 2010, 1(1):3-14
    伏小勇, 秦赏, 杨柳, 等. 蚯蚓对土壤中重金属的富集作用研究[J]. 农业环境科学学报, 2009, 28(1):78-83

    Fu X Y, Qin S, Yang L, et al. Effects of earthworm accumulation of heavy metals in soil matrix[J]. Journal of Agro-Environment Science, 2009, 28(1):78-83(in Chinese)

    Nannoni F, Rossi S, Protano G. Soil properties and metal accumulation by earthworms in the Siena urban area (Italy)[J]. Applied Soil Ecology, 2014, 77:9-17
    Wang K, Qiao Y H, Zhang H Q, et al. Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China[J]. Ecotoxicology and Environmental Safety, 2018, 148:876-883
    Dai J, Becquer T, Henri Rouiller J, et al. Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils[J]. Soil Biology and Biochemistry, 2004, 36(1):91-98
    Ernst G, Zimmermann S, Christie P, et al. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils[J]. Environmental Pollution, 2008, 156(3):1304-1313
    陈娴, 王晓蓉, 季荣. 蚯蚓(Eiseniafoetida)对水稻土中Cd的富集及其氧化应激[J]. 农业环境科学学报, 2015, 34(8):1464-1469

    Chen X, Wang X R, Ji R. Bioaccumulation and oxidative stresses of cadmium in earthworm Eisenia foetida in a paddy soil[J]. Journal of Agro-Environment Science, 2015, 34(8):1464-1469(in Chinese)

    Becquer T, Dai J, Quantin C, et al. Sources of bioavailable trace metals for earthworms from a Zn-, Pb- and Cd-contaminated soil[J]. Soil Biology and Biochemistry, 2005, 37(8):1564-1568
    Traudt E M, Ranville J F, Meyer J S. Acute toxicity of ternary Cd-Cu-Ni and Cd-Ni-Zn mixtures to Daphnia magna:Dominant metal pairs change along a concentration gradient[J]. Environmental Science & Technology, 2017, 51(8):4471-4481
    徐小庆, 郭璞, 王晓静, 等. 浓度加和模型与独立作用模型在化学混合物联合毒性预测方面的研究进展[J]. 动物医学进展, 2020, 41(4):91-94

    Xu X Q, Guo P, Wang X J, et al. Progress on CA and IA models in combined toxicity prediction of chemical mixtures[J]. Progress in Veterinary Medicine, 2020, 41(4):91-94(in Chinese)

    王秋林, 王浩毅, 王树人. 氧化应激状态的评价[J]. 中国病理生理杂志, 2005, 21(10):2069-2074

    Wang Q L, Wang H Y, Wang S R. Assessment of the state of oxidative stress[J]. Chinese Journal of Pathophysiology, 2005, 21(10):2069-2074(in Chinese)

    van der Oost R, Beyer J, Vermeulen N P E. Fish bioaccumulation and biomarkers in environmental risk assessment:A review[J]. Environmental Toxicology and Pharmacology, 2003, 13(2):57-149
  • 加载中
计量
  • 文章访问数:  340
  • HTML全文浏览数:  340
  • PDF下载数:  19
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-01

场地实际重金属复合污染土壤生态毒性效应定量评价

    通讯作者: 王美娥, mewang@rcees.ac.cn
    作者简介: 马喆(1994—),女,硕士研究生,研究方向为生态毒理学,E-mail:mazhe18@mails.ucas.ac.cn
  • 1. 中国科学院生态环境研究中心, 城市与区域国家重点实验室, 北京 100085;
  • 2. 中国科学院大学, 北京 100049
基金项目:  国家重点研发计划项目(2018YFC1800505)

摘要: 场地实际重金属复合污染土壤生态效应定量评价是场地生态风险评估中的难点,本研究耦合“自上而下”和“自下而上”复合污染联合效应评价的思路,构建了由“有效生物标志物响应筛选-主导污染物识别-不同暴露类型/污染物种类联合效应估算”3个步骤组成的场地实际重金属复合污染土壤生态效应定量评价方法,并以江苏省某废弃电镀污染场地为研究对象,采用蚯蚓土壤微宇宙培养实验进行了方法验证。以蚯蚓组织丙二醛(MDA)含量、金属硫蛋白(MT)含量、过氧化氢酶(CAT)活性、超氧化物歧化酶(SOD)活性和还原型谷胱甘肽(GSH)含量等生物标志物为效应终点的分析结果表明,蚯蚓对该场地的主要土壤重金属污染物包括Cd、Cu、Zn、Ni、Pb和Cr的富集能力表现为Cd>Cu>Zn>Ni>Pb>Cr;主成分分析结果表明,GSH含量、CAT活性和MDA含量为有效生物标志物,重金属Cd和Zn为主导污染物。GSH含量变化与土壤Cd总量及Zn的DTPA提取态含量之间存在多元线性关系;蚯蚓MDA含量变化能够通过土壤Cd的DTPA提取态含量进行预测;CAT活性变化能够通过Zn的土壤总量及蚯蚓生物累积量进行预测。针对场地实际污染土壤的性质及污染特征,对3类有效生物标志物响应的半效应浓度(half effect dose,EC50)估算的结果表明,3类有效生物标志物的敏感性从高到低的顺序为:GSH>CAT>MDA;不同元素以及不同类型暴露之间(如,与GSH含量变化对应的土壤总Cd与DTPA-Zn),以及同一元素不同暴露之间(如,与CAT活性变化对应的土壤总Zn与蚯蚓组织生物累积Zn)都有可能存在交互作用,而这些污染物暴露之间不存在暴露量变化的相关性。以上结果表明,采用多元统计分析手段,通过有效生物标志物响应、主导污染物的筛选以及联合效应估算,能够实现野外实际土壤重金属复合污染,生态效应的定量评价。

English Abstract

参考文献 (33)

目录

/

返回文章
返回