异菌脲在油菜植株、土壤和水中的代谢途径及代谢物3,5-DCA的毒性研究

汪震, 华修德, 施海燕, 王鸣华. 异菌脲在油菜植株、土壤和水中的代谢途径及代谢物3,5-DCA的毒性研究[J]. 生态毒理学报, 2022, 17(4): 378-385. doi: 10.7524/AJE.1673-5897.20210308003
引用本文: 汪震, 华修德, 施海燕, 王鸣华. 异菌脲在油菜植株、土壤和水中的代谢途径及代谢物3,5-DCA的毒性研究[J]. 生态毒理学报, 2022, 17(4): 378-385. doi: 10.7524/AJE.1673-5897.20210308003
Wang Zhen, Hua Xiude, Shi Haiyan, Wang Minghua. Studies on Metabolic Pathways of Iprodione in Rape Plant, Soil, and Water and Toxicity of Metabolite 3,5-DCA[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 378-385. doi: 10.7524/AJE.1673-5897.20210308003
Citation: Wang Zhen, Hua Xiude, Shi Haiyan, Wang Minghua. Studies on Metabolic Pathways of Iprodione in Rape Plant, Soil, and Water and Toxicity of Metabolite 3,5-DCA[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 378-385. doi: 10.7524/AJE.1673-5897.20210308003

异菌脲在油菜植株、土壤和水中的代谢途径及代谢物3,5-DCA的毒性研究

    作者简介: 汪震(1996—),男,博士研究生,研究方向为农药残留与环境毒理,E-mail:2020202059@stu.njau.edu.cn
    通讯作者: 王鸣华, E-mail: wangmha@njau.edu.cn
  • 基金项目:

    国家重点研发计划项目(2016YFD0200207)

  • 中图分类号: X171.5

Studies on Metabolic Pathways of Iprodione in Rape Plant, Soil, and Water and Toxicity of Metabolite 3,5-DCA

    Corresponding author: Wang Minghua, wangmha@njau.edu.cn
  • Fund Project:
  • 摘要: 为了明确异菌脲在作物和环境中的代谢及代谢产物3,5-二氯苯胺(3,5-DCA)的生态风险,通过水培试验、土壤孵育和水解试验,采用UPLC-TOF-MS/MS,鉴定了异菌脲在油菜植株、土壤和水中的代谢产物,推测了代谢途径,并研究了3,5-DCA对细胞和蚯蚓的毒性。在油菜植株中检测到4种异菌脲代谢产物(M1、M3、M6和M7),在土壤中发现了5种代谢产物(M1、M3、M6、M7和M8),在水中发现了7种代谢产物(M1、M2、M4、M5、M7、M8和M9)。根据代谢产物的化学结构,明确了异菌脲的代谢主要通过酰胺键的断裂及脱烷基化反应,并推测了异菌脲在油菜植株、土壤和水中的代谢途径。代谢产物3,5-DCA对Hep G2的细胞毒性(IC50为99.7 mg·L-1)是异菌脲(IC50为304.8 mg·L-1)的3.1倍,对赤子爱胜蚓的14 d急性毒性(LC50为31.56 mg·kg-1)是母体的15倍以上(LC50>500 mg·kg-1),表明异菌脲的代谢为增毒代谢。研究结果对异菌脲的环境安全性评价具有重要的意义。
  • 加载中
  • 刘琨, 李勇, 王蓉, 等. 我国人参产区灰霉病菌抗药性研究初报[J]. 植物保护, 2020, 46(2):196-198

    , 208 Liu K, Li Y, Wang R, et al. Preliminary report of the resistance of Botrytis cinerea isolates from ginseng producing area to four fungicides in China[J]. Plant Protection, 2020, 46(2):196-198, 208(in Chinese)

    Dutra P S S, Pereira W V, De Mio L L M. Brazilian isolates of Monilinia fructicola from peach do not present reduced sensitivity to iprodione[J]. European Journal of Plant Pathology, 2019, 153(4):1341-1346
    Molaei H, Abrinbana M, Ghosta Y. Baseline sensitivities to azoxystrobin and tebuconazole in Sclerotinia sclerotiorum isolates from sunflower in Iran related to sensitivities to carbendazim and iprodione[J]. Journal of Phytopathology, 2020, 168(6):353-362
    Kim E, Lee H M, Kim Y H. Morphogenetic alterations of Alternaria alternata exposed to dicarboximide fungicide, iprodione[J]. The Plant Pathology Journal, 2017, 33(1):95-100
    汪汉成, 张敏, 张之矾, 等. 多菌灵等5种杀菌剂对烟草立枯病菌的生物活性[J]. 农药学学报, 2017, 19(5):569-575

    Wang H C, Zhang M, Zhang Z F, et al. Bioactivities of carbendazim, etc. five fungicides against Rhizoctonia solani in tobacco[J]. Chinese Journal of Pesticide Science, 2017, 19(5):569-575(in Chinese)

    Kiss A, Virág D. Photostability and photodegradation pathways of distinctive pesticides[J]. Journal of Environmental Quality, 2009, 38(1):157-163
    Zhang Z X, Du G Z, Gao B B, et al. Stereoselective endocrine-disrupting effects of the chiral triazole fungicide prothioconazole and its chiral metabolite[J]. Environmental Pollution, 2019, 251:30-36
    Gao J, Wang F, Cui J N, et al. Assessment of toxicity and environmental behavior of chiral ethiprole and its metabolites using zebrafish model[J]. Journal of Hazardous Materials, 2021, 414:125492
    Liu H, Yi X T, Bi J W, et al. The enantioselective environmental behavior and toxicological effects of pyriproxyfen in soil[J]. Journal of Hazardous Materials, 2019, 365:97-106
    宋晓. 氟虫腈及其代谢物的细胞毒性研究[D]. 北京:中国农业科学院, 2019:6-7 Song X. Research on the cytotoxicity of fipronil and its metabolites[D]. Beijing:Chinese Academy of Agricultural Sciences, 2019:6

    -7(in Chinese)

    Li H X, Zhong Q, Wang X R, et al. The degradation and metabolism of chlorfluazuron and flonicamid in tea:A risk assessment from tea garden to cup[J]. The Science of the Total Environment, 2021, 754:142070
    张嘉坤, 武宪, 周旭东, 等. 二甲四氯异辛酯及其代谢物二甲四氯在玉米中的残留量及风险评估[J]. 食品安全质量检测学报, 2020, 11(20):7544-7554

    Zhang J K, Wu X, Zhou X D, et al. Residue and risk assessment of 2-methyl-4-chlorophenoxyacetic acid-isooctyl and its metabolite 2-methyl-4-chlorophenoxyacetic acid in corn[J]. Journal of Food Safety & Quality, 2020, 11(20):7544-7554(in Chinese)

    Schwack W, Bourgeois B, Walker F. Fungicides and photochemistry photodegradation of the dicarboximide fungicide iprodione[J]. Chemosphere, 1995, 31(4):2993-3000
    Ambrus, Buys M, Miyamoto J, et al. IUPAC reports on pesticides, No. 28:Some aspects of the analysis of residues of dicarboximide fungicides in food[J]. Pure and Applied Chemistry, 1991, 63(5):747-762
    Rifai A, Souissi Y, Genty C, et al. Ultraviolet degradation of procymidone:Structural characterization by gas chromatography coupled with mass spectrometry and potential toxicity of photoproducts using in silico tests[J]. Rapid Communications in Mass Spectrometry:RCM, 2013, 27(13):1505-1516
    United States Environmental Protection Agency (US EPA). Report of the Food Quality Protection Act (FQPA) Tolerance Reassessment Progress and Risk Management Decision (TRED) for Procymidone[S]. Washington DC:Office of Prevention, Pesticides and Toxic Substances, 2005
    Dom N, Knapen D, Benoot D, et al. Aquatic multi-species acute toxicity of (chlorinated) anilines:Experimental versus predicted data[J]. Chemosphere, 2010, 81(2):177-186
    Lai Q, Sun X F, Li L S, et al. Toxicity effects of procymidone, iprodione and their metabolite of 3,5-dichloroaniline to zebrafish[J]. Chemosphere, 2021, 272:129577
    农业农村部农药检定所. 农药残留物手册[M]. 北京:中国农业出版社, 2018:216
    柳嘉怡, 卜宪娜. 霍格兰(Hoagland)溶液对小麦种苗生长的影响[J]. 现代农业科技, 2020(1):9-10 Liu J Y, Bu X N. Effect of Hoagland solution on growth of wheat seedlings[J]. Modern Agricultural Science and Technology, 2020

    (1):9-10(in Chinese)

    Yang Q Q, Shan W Y, Hu L G, et al. Uptake and transformation of silver nanoparticles and ions by rice plants revealed by dual stable isotope tracing[J]. Environmental Science & Technology, 2019, 53(2):625-633
    高玉莲, 李睿光, 常静, 等. 油菜对3种作物种子萌发和幼苗生长的化感作用[J]. 应用生态学报, 2020, 31(12):4153-4160

    Gao Y L, Li R G, Chang J, et al. Allelopathy of rape on seed germination and seedling growth of three crops[J]. Chinese Journal of Applied Ecology, 2020, 31(12):4153-4160(in Chinese)

    李如男, 董丰收, 吴小虎, 等. 酶介导下农药在植物中的三相代谢转化研究进展[J]. 农药学学报, 2019, 21(S1):799-814

    Li R N, Dong F S, Wu X H, et al. Research progress in three-phase metabolic transformations of pesticides in plants mediated by enzymes[J]. Chinese Journal of Pesticide Science, 2019, 21(S1):799-814(in Chinese)

    Morant M, Bak S, Møller B L, et al. Plant cytochromes P450:Tools for pharmacology, plant protection and phytoremediation[J]. Current Opinion in Biotechnology, 2003, 14(2):151-162
    Ter Halle A, Drncova D, Richard C. Phototransformation of the herbicide sulcotrione on maize cuticular wax[J]. Environmental Science & Technology, 2006, 40(9):2989-2995
    Liu X M, Xu X, Li B H, et al. Genomic and transcriptomic insights into cytochrome P450 monooxygenase genes involved in nicosulfuron tolerance in maize (Zea mays L.)[J]. Journal of Integrative Agriculture, 2018, 17(8):1790-1799
    Huang M T, Lu Y C, Zhang S, et al. Rice (Oryza sativa) laccases involved in modification and detoxification of herbicides atrazine and isoproturon residues in plants[J]. Journal of Agricultural and Food Chemistry, 2016, 64(33):6397-6406
    Athiel P, Alfizar, Mercadier C, et al. Degradation of iprodione by a soil Arthrobacter-like strain[J]. Applied and Environmental Microbiology, 1995, 61(9):3216-3220
    Mercadier C, Garcia D, Vega D, et al. Metabolism of iprodione in adapted and non-adapted soils; Effect of soil inoculation with an iprodione-degrading Arthrobacter strain[J]. Soil Biology and Biochemistry, 1996, 28(12):1791-1796
    Campos M, Karas P S, Perruchon C, et al. Novel insights into the metabolic pathway of iprodione by soil bacteria[J]. Environmental Science and Pollution Research International, 2017, 24(1):152-163
    Lee J B, Sohn H Y, Shin K S, et al. Microbial biodegradation and toxicity of vinclozolin and its toxic metabolite 3,5-dichloroaniline[J]. Journal of Microbiology and Biotechnology, 2008, 18(2):343-349
  • 加载中
计量
  • 文章访问数:  1154
  • HTML全文浏览数:  1154
  • PDF下载数:  34
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-03-08

异菌脲在油菜植株、土壤和水中的代谢途径及代谢物3,5-DCA的毒性研究

    通讯作者: 王鸣华, E-mail: wangmha@njau.edu.cn
    作者简介: 汪震(1996—),男,博士研究生,研究方向为农药残留与环境毒理,E-mail:2020202059@stu.njau.edu.cn
  • 南京农业大学植物保护学院, 南京 210095
基金项目:

国家重点研发计划项目(2016YFD0200207)

摘要: 为了明确异菌脲在作物和环境中的代谢及代谢产物3,5-二氯苯胺(3,5-DCA)的生态风险,通过水培试验、土壤孵育和水解试验,采用UPLC-TOF-MS/MS,鉴定了异菌脲在油菜植株、土壤和水中的代谢产物,推测了代谢途径,并研究了3,5-DCA对细胞和蚯蚓的毒性。在油菜植株中检测到4种异菌脲代谢产物(M1、M3、M6和M7),在土壤中发现了5种代谢产物(M1、M3、M6、M7和M8),在水中发现了7种代谢产物(M1、M2、M4、M5、M7、M8和M9)。根据代谢产物的化学结构,明确了异菌脲的代谢主要通过酰胺键的断裂及脱烷基化反应,并推测了异菌脲在油菜植株、土壤和水中的代谢途径。代谢产物3,5-DCA对Hep G2的细胞毒性(IC50为99.7 mg·L-1)是异菌脲(IC50为304.8 mg·L-1)的3.1倍,对赤子爱胜蚓的14 d急性毒性(LC50为31.56 mg·kg-1)是母体的15倍以上(LC50>500 mg·kg-1),表明异菌脲的代谢为增毒代谢。研究结果对异菌脲的环境安全性评价具有重要的意义。

English Abstract

参考文献 (31)

目录

/

返回文章
返回