腐霉利在油菜植株上的消解及在水培体系中的代谢研究

赵雪君, 李连山, 孟鸽, 张旭, 王鸣华, 华修德. 腐霉利在油菜植株上的消解及在水培体系中的代谢研究[J]. 生态毒理学报, 2022, 17(2): 129-137. doi: 10.7524/AJE.1673-5897.20210716001
引用本文: 赵雪君, 李连山, 孟鸽, 张旭, 王鸣华, 华修德. 腐霉利在油菜植株上的消解及在水培体系中的代谢研究[J]. 生态毒理学报, 2022, 17(2): 129-137. doi: 10.7524/AJE.1673-5897.20210716001
Zhao Xuejun, Li Lianshan, Meng Ge, Zhang Xu, Wang Minghua, Hua Xiude. Degradation of Procymidone on Rape and Its Metabolism in Hydroponic System[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 129-137. doi: 10.7524/AJE.1673-5897.20210716001
Citation: Zhao Xuejun, Li Lianshan, Meng Ge, Zhang Xu, Wang Minghua, Hua Xiude. Degradation of Procymidone on Rape and Its Metabolism in Hydroponic System[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 129-137. doi: 10.7524/AJE.1673-5897.20210716001

腐霉利在油菜植株上的消解及在水培体系中的代谢研究

    作者简介: 赵雪君(1996—),女,硕士研究生,研究方向为农药残留与环境毒理,E-mail: 2019802202@njau.edu.cn
    通讯作者: 华修德, E-mail: huaxiude@njau.edu.cn
  • 基金项目:

    国家重点研发计划项目(2016YFD0200207)

  • 中图分类号: X171.5

Degradation of Procymidone on Rape and Its Metabolism in Hydroponic System

    Corresponding author: Hua Xiude, huaxiude@njau.edu.cn
  • Fund Project:
  • 摘要: 为了明确腐霉利在油菜植株上的消解和代谢行为,建立了腐霉利在油菜植株各部位的残留分析方法,开展了腐霉利在江苏省、湖南省和青海省三地油菜植株上的消解规律研究;通过室内水培模拟实验,鉴定了腐霉利在油菜植株和培养液中的代谢产物,揭示了其代谢途径。结果表明,腐霉利在江苏省、青海省和湖南省油菜各部位的原始沉积量为:叶>花序>荚>茎,在各部位中的消解动态均符合一级动力学方程(R2>0.88),半衰期在0.6~3.7 d之间,消解速率为花序>荚>茎>叶,消解速率在区域上呈现出江苏省>湖南省>青海省。通过高效液相色谱串联飞行时间质谱联用仪,在水培油菜植株中鉴定出腐霉利单脱氯产物M1(C13H12ClNO2),在培养液中鉴定出4个代谢产物腐霉利氧化产物M2(C13H13Cl2NO3)、3,5-二氯苯胺M3(C6H5Cl2N)、腐霉利氧化产物M4(C13H13Cl2NO4)和腐霉利氧化产物M5(C13H11Cl2NO3)。相关研究结果为腐霉利的合理使用及安全性评价提供了数据参考。
  • 加载中
  • 卢川, 李悦有, 翟黎芳, 等. 京津冀地区冬油菜种植现状与发展对策[J]. 现代农业科技, 2018(20): 43-45 Lu C, Li Y Y, Zhai L F, et al. Present situation and development countermeasures of winter rapeseed planting in Beijing-Tianjin-Hebei region [J]. Modern Agricultural Science and Technology, 2018

    (20): 43-45 (in Chinese)

    王璐. 中国油菜产业安全研究[D]. 武汉: 华中农业大学, 2014: 10-90 Wang L. Study on China’s rape industry security [D]. Wuhan: Huazhong Agricultural University, 2014: 10

    -90 (in Chinese)

    张宏军, 张佳, 刘学, 等. 我国油菜田农药的登记及应用概况[J]. 湖北农业科学, 2008, 47(7): 846-851

    Zhang H J, Zhang J, Liu X, et al. The review of the registration and application of pesticide of canola in China [J]. Hubei Agricultural Sciences, 2008, 47(7): 846-851 (in Chinese)

    董章辉, 张艳丽, 王虎, 等. 我国绿肥油菜研究进展及发展前景展望[J]. 河北农业科学, 2021, 25(4): 67-70

    , 87 Dong Z H, Zhang Y L, Wang H, et al. Research progress and development prospect of green fertilizer rape in China [J]. Journal of Hebei Agricultural Sciences, 2021, 25(4): 67-70, 87 (in Chinese)

    陈莎莎. 长江流域油菜生产规模效益研究[D]. 武汉: 华中农业大学, 2017: 3-80 Chen S S. The research of rapeseed production scale profit in Yangtze River Basin [D]. Wuhan: Huazhong Agricultural University, 2017: 3

    -80 (in Chinese)

    王春芝. 油菜菌核病的发病规律与综合防治技术[J]. 农技服务, 2008, 25(6): 55-56
    谷维. 油菜菌核病的发生原因及综合防治对策[J]. 黑龙江农业科学, 2008(5): 75-77 Gu W. The occurrence causes and integrated control measures for Sclerotinia sclerotiorum [J]. Heilongjiang Agricultural Sciences, 2008

    (5): 75-77 (in Chinese)

    汪雷, 刘瑶, 丁一娟, 等. 油菜菌核病研究进展[J]. 西北农林科技大学学报: 自然科学版, 2015, 43(10): 85-93

    Wang L, Liu Y, Ding Y J, et al. Advance in Sclerotinia stem rot of rapeseed [J]. Journal of Northwest A & F University: Natural Science Edition, 2015, 43(10): 85-93 (in Chinese)

    冯韬. 油菜菌核病病理与防治研究进展[J]. 作物研究, 2014, 28(3): 316-320
    周明国, 叶钟音, 刘经芬. 杀菌剂抗性进展[J]. 南京农业大学学报, 1994, 17(3): 33-41

    Zhou M G, Ye Z Y, Liu J F. Progress of fungicide resistance research [J]. Journal of Nanjing Agricultural University, 1994, 17(3): 33-41 (in Chinese)

    李红霞, 陆悦健, 周明国, 等. 油菜菌核病菌β-微管蛋白基因与多菌灵抗药性相关突变的研究[J]. 中国油料作物学报, 2003, 25(2): 56-60

    Li H X, Lu Y J, Zhou M G, et al. Mutation in β-tubulin of Sclerotinia sclerotiorum conferring resistance to carbendazim in rapeseed field isolates [J]. Chinese Journal of Oil Crop Scieves, 2003, 25(2): 56-60 (in Chinese)

    陈勇兵, 胡丽秋, 许美良. 20%腐霉利悬浮剂防治黄瓜菌核病的田间药效试验[J]. 安徽农业科学, 2007, 25: 7881-7920 Chen Y B, Hu L Q, Xu M L. Field efficacy test of 20

    % protrichum suspension against Sclerotinia sclerotiorum of cucumber [J]. Journal of Anhui Agricultural Sciences, 2007, 25: 7881-7920 (in Chinese)

    宋晰, 肖露, 林东, 等. 番茄灰霉病菌对腐霉利的抗药性检测及生物学性状研究[J]. 农药学学报, 2013, 15(4): 398-404

    Song X, Xiao L, Lin D, et al. Detection of procymidone resistance and investigation of biological characteristics in Botrytis cinerea [J]. Chinese Journal of Pesticide Science, 2013, 15(4): 398-404 (in Chinese)

    石志琦, 周明国, 叶钟音. 核盘菌对菌核净的抗药性机制初探[J]. 农药学学报, 2000, 2(2): 47-51

    Shi Z Q, Zhou M G, Ye Z Y. Study on resistance mechanism of Sclerotinia sclerotiorum to dimethachlon [J]. Chinese Journal of Pesticide Science, 2000, 2(2): 47-51 (in Chinese)

    张夕林, 孙雪梅, 张谷丰, 等. 油菜菌核病抗药性监测与综合治理技术的研究[J]. 农药科学与管理, 2003, 24(6): 18-22

    Zhang X L, Sun X M, Zhang G F, et al. Preliminary report on the monitoring of the resistance of Sclerotinia libertiana to carbendazim and its integrated management [J]. Pesticide Science and Administration, 2003, 24(6): 18-22 (in Chinese)

    Kapukiran F, Firat M, Chormey D S, et al. Accurate and sensitive determination method for procymidone and chlorflurenol in municipal wastewater, medical wastewater and irrigation canal water by GC-MS after vortex assisted switchable solvent liquid phase microextraction [J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(6): 848-853
    Wu A Y, Yu Q X, Lu H H, et al. Developmental toxicity of procymidone to larval zebrafish based on physiological and transcriptomic analysis [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021, 248: 109081
    Sarmah A K, Close M E, Mason N W H. Dissipation and sorption of six commonly used pesticides in two contrasting soils of New Zealand [J]. Journal of Environmental Science and Health, Part B, 2009, 44(4): 325-336
    Abe J, Tomigahara Y, Tarui H, et al. Identification of metabolism and excretion differences of procymidone between rats and humans using chimeric mice: Implications for differential developmental toxicity [J]. Journal of Agricultural and Food Chemistry, 2018, 66(8): 1955-1963
    周勇, 朴秀英, 廖先骏, 等. 韭菜中腐霉利的残留检测及长期膳食暴露评估[J]. 农药学学报, 2021, 23(2): 373-379

    Zhou Y, Piao X Y, Liao X J, et al. Residual risk verification and chronic dietary risk assessment of procymidone in Chinese chives [J]. Chinese Journal of Pesticide Science, 2021, 23(2): 373-379 (in Chinese)

    中华人民共和国国家卫生健康委员会, 中华人民共和国农业农村部, 国家市场监督管理局. 食品安全国家标准 食品中农药最大残留量[S]. 北京: 中华人民共和国国家卫生健康委员会, 中华人民共和国农业农村部,国家市场监督管理局, 2021
    杨莉, 冯光泉, 张文斌, 等. 固相萃取-GC-ECD法分析三七中腐霉利的消解动态及残留规律[J]. 农药, 2018, 57(12): 908-911

    Yang L, Feng G Q, Zhang W B, et al. The residual dynamics and final residues of procymidone in Panax notoginseng by SPE-GC-ECD [J]. Agrochemicals, 2018, 57(12): 908-911 (in Chinese)

    黄晓春. 腐霉利在韭菜中残留现状分析及风险评估[J]. 安徽农业科学, 2021, 49(7): 188-190

    Huang X C. Status analysis and risk assessment of procymidone residues in leek [J]. Journal of Anhui Agricultural Sciences, 2021, 49(7): 188-190 (in Chinese)

    陈柏. 15%腐霉利烟剂在保护地番茄及土壤中的消解动态与残留量[J]. 现代农药, 2014, 13(4): 39-41

    Chen B. Residue and degradation dynamic of procymidone 15% FU in tomato and soil [J]. Modern Agrochemicals, 2014, 13(4): 39-41 (in Chinese)

    Ambrus A, Buys M, Miyamoto J, et al. Analysis of residues of dicarboximide fungicides in food [J]. Pure and Applied Chemistry, 1999, 63: 747-762
    Mikami N, Imanishi K, Yamada H, et al. Photolysis and hydrolysis of the fungicide procymidone in water [J]. Journal of Pesticide Science, 1984, 9(2): 223-228
    Schwack W, Bourgeois B. Fungicides and photochemistry: Iprodione, procymidone, vinclozolin 1. photodehalogenation [J]. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung, 1989, 188(4): 346-347
    Lai Q, Sun X F, Li L S, et al. Toxicity effects of procymidone, iprodione and their metabolite of 3,5-dichloroaniline to zebrafish [J]. Chemosphere, 2021, 272: 129577
    Racine C R, Ferguson T, Preston D, et al. The role of biotransformation and oxidative stress in 3,5-dichloroaniline (3,5-DCA) induced nephrotoxicity in isolated renal cortical cells from male Fischer 344 rats [J]. Toxicology, 2016, 341-343: 47-55
  • 加载中
计量
  • 文章访问数:  1427
  • HTML全文浏览数:  1427
  • PDF下载数:  41
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-07-16

腐霉利在油菜植株上的消解及在水培体系中的代谢研究

    通讯作者: 华修德, E-mail: huaxiude@njau.edu.cn
    作者简介: 赵雪君(1996—),女,硕士研究生,研究方向为农药残留与环境毒理,E-mail: 2019802202@njau.edu.cn
  • 南京农业大学植物保护学院,南京 210095
基金项目:

国家重点研发计划项目(2016YFD0200207)

摘要: 为了明确腐霉利在油菜植株上的消解和代谢行为,建立了腐霉利在油菜植株各部位的残留分析方法,开展了腐霉利在江苏省、湖南省和青海省三地油菜植株上的消解规律研究;通过室内水培模拟实验,鉴定了腐霉利在油菜植株和培养液中的代谢产物,揭示了其代谢途径。结果表明,腐霉利在江苏省、青海省和湖南省油菜各部位的原始沉积量为:叶>花序>荚>茎,在各部位中的消解动态均符合一级动力学方程(R2>0.88),半衰期在0.6~3.7 d之间,消解速率为花序>荚>茎>叶,消解速率在区域上呈现出江苏省>湖南省>青海省。通过高效液相色谱串联飞行时间质谱联用仪,在水培油菜植株中鉴定出腐霉利单脱氯产物M1(C13H12ClNO2),在培养液中鉴定出4个代谢产物腐霉利氧化产物M2(C13H13Cl2NO3)、3,5-二氯苯胺M3(C6H5Cl2N)、腐霉利氧化产物M4(C13H13Cl2NO4)和腐霉利氧化产物M5(C13H11Cl2NO3)。相关研究结果为腐霉利的合理使用及安全性评价提供了数据参考。

English Abstract

参考文献 (29)

目录

/

返回文章
返回