羟基多氯联苯在小鼠体内的蓄积及迁移特征

王梦圆, 张龙飞, 吴迪, 方长玲, 迟海, 顾润润, 王媛, 席寅峰, 李思曼, 史永富. 羟基多氯联苯在小鼠体内的蓄积及迁移特征[J]. 生态毒理学报, 2022, 17(2): 138-147. doi: 10.7524/AJE.1673-5897.20210611001
引用本文: 王梦圆, 张龙飞, 吴迪, 方长玲, 迟海, 顾润润, 王媛, 席寅峰, 李思曼, 史永富. 羟基多氯联苯在小鼠体内的蓄积及迁移特征[J]. 生态毒理学报, 2022, 17(2): 138-147. doi: 10.7524/AJE.1673-5897.20210611001
Wang Mengyuan, Zhang Longfei, Wu Di, Fang Changling, Chi Hai, Gu Runrun, Wang Yuan, Xi Yinfeng, Li Siman, Shi Yongfu. Accumulation and Migration Characteristics of Hydroxylated Polychlorinated Biphenyls in Mice[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 138-147. doi: 10.7524/AJE.1673-5897.20210611001
Citation: Wang Mengyuan, Zhang Longfei, Wu Di, Fang Changling, Chi Hai, Gu Runrun, Wang Yuan, Xi Yinfeng, Li Siman, Shi Yongfu. Accumulation and Migration Characteristics of Hydroxylated Polychlorinated Biphenyls in Mice[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 138-147. doi: 10.7524/AJE.1673-5897.20210611001

羟基多氯联苯在小鼠体内的蓄积及迁移特征

    作者简介: 王梦圆(1997—),男,硕士研究生,研究方向为水产品质量安全与控制,E-mail: mnwang_nn@163.com
    通讯作者: 史永富, E-mail: xyzmn530@sina.com
  • 基金项目:

    国家自然科学基金资助项目(31501572)

  • 中图分类号: X171.5

Accumulation and Migration Characteristics of Hydroxylated Polychlorinated Biphenyls in Mice

    Corresponding author: Shi Yongfu, xyzmn530@sina.com
  • Fund Project:
  • 摘要: 羟基多氯联苯(hydroxylated polychlorinated biphenyls, OH-PCBs)作为多氯联苯(polychlorinated biphenyls, PCBs)在生物体内的主要代谢产物之一,能够通过食物链传递在高等动物体内产生蓄积并对其生命健康造成危害。本研究旨在探索OH-PCBs通过水产品摄食途径暴露后,在模式生物体内的蓄积和迁移规律。以鲫鱼为水产品代表,以小鼠为研究对象,向鲫鱼可食性组织添加3-OH-PCB101和4-OH-PCB101的混合标准溶液(1 000 ng·mL-1)制作加标饲料,并以小鼠每日摄食总量的10%对其进行投喂。分别在暴露实验的第12、24、72和168小时解剖取样,并收集粪便。检测结果显示,2种OH-PCB101在胃、肠等消化组织器官的浓度高于其他组织并能随着粪便排出,且倾向于在含血量较高的组织(如心、肺和脾)中蓄积。OH-PCB101在各组织中的蓄积量由高到低依次为大肠>胃>小肠>脾≈肺>心>肝>肾>血液≈脑>肌肉≈睾丸。同时发现在脑、心、肺、肝、肾、性腺、肌肉等组织样品中,4-OH-PCB101的蓄积浓度始终高于3-OH-PCB101。这表明,虽然通过水产品摄入的OH-PCB101主要通过粪便排出体外,然而在脑、心、肺、肝、胃和脾等11个组织及血液中均产生蓄积,并且2种OH-PCB101可能由于结构不同导致其在各组织中的蓄积量存在差异。本研究有助于揭示OH-PCBs通过摄食暴露后在生物体内的蓄积分布及排泄等归趋问题,同时表明在环境及生物体中蓄积的OH-PCBs等二代持久性污染物对人体健康仍存在潜在威胁。
  • 加载中
  • Letcher R J, Klasson-Wehler E, Bergman A. Methyl Sulfone and Hydroxylated Metabolites of Polychlorinated Biphenyls. Volume 3 Anthropogenic Compounds Part K [M]. Berlin: Springer Berlin, 2000: 315-359
    Wu X N, Zhai G S, Schnoor J L, et al. Atropselective disposition of 2,2’,3,4’,6-pentachlorobiphenyl (PCB 91) and identification of its metabolites in mice with liver-specific deletion of cytochrome P450 reductase [J]. Chemical Research in Toxicology, 2020, 33(6): 1328-1338
    Uwimana E, Ruiz P, Li X S, et al. Human CYP2A6, CYP2B6, and CYP2E1 atropselectively metabolize polychlorinated biphenyls to hydroxylated metabolites [J]. Environmental Science & Technology, 2019, 53(4): 2114-2123
    Dhakal K, Gadupudi G S, Lehmler H J, et al. Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs) [J]. Environmental Science and Pollution Research International, 2018, 25(17): 16277-16290
    Liao Z H, Zeng M, Wang L M. Atmospheric oxidation mechanism of polychlorinated biphenyls (PCBs) initiated by OH radicals [J]. Chemosphere, 2020, 240: 124756
    Marek R F, Martinez A, Hornbuckle K C. Discovery of hydroxylated polychlorinated biphenyls (OH-PCBs) in sediment from a Lake Michigan waterway and original commercial aroclors [J]. Environmental Science & Technology, 2013, 47(15): 8204-8210
    Nomiyama K, Uchiyama Y, Horiuchi S, et al. Organohalogen compounds and their metabolites in the blood of Japanese amberjack (Seriola quinqueradiata) and scalloped hammerhead shark (Sphyrna lewini) from Japanese coastal waters [J]. Chemosphere, 2011, 85(3): 315-321
    Buckman A H, Brown S B, Small J, et al. Role of temperature and enzyme induction in the biotransformation of polychlorinated biphenyls and bioformation of hydroxylated polychlorinated biphenyls by rainbow trout (Oncorhynchus mykiss) [J]. Environmental Science & Technology, 2007, 41(11): 3856-3863
    王帅, 史永富. 电子废物拆解区羟基多氯联苯的分布及传递特征研究[J]. 安徽农业科学, 2019, 47(16): 68-72

    , 77 Wang S, Shi Y F. Study on distribution and transmitting characteristics of hydroxyl polychlorinated biphenyls in E-waste dismantling area [J]. Journal of Anhui Agricultural Sciences, 2019, 47(16): 68-72, 77 (in Chinese)

    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2020中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 144
    Fujii Y, Nishimura E, Kato Y, et al. Dietary exposure to phenolic and methoxylated organohalogen contaminants in relation to their concentrations in breast milk and serum in Japan [J]. Environment International, 2014, 63: 19-25
    Sandau C D, Ayotte P, Dewailly E, et al. Analysis of hydroxylated metabolites of PCBs (OH-PCBs) and other chlorinated phenolic compounds in whole blood from Canadian Inuit [J]. Environmental Health Perspectives, 2000, 108(7): 611-616
    Sandau C D, Ayotte P, Dewailly E, et al. Pentachlorophenol and hydroxylated polychlorinated biphenyl metabolites in umbilical cord plasma of neonates from coastal populations in Québec [J]. Environmental Health Perspectives, 2002, 110(4): 411-417
    Park J S, Petreas M, Cohn B A, et al. Hydroxylated PCB metabolites (OH-PCBs) in archived serum from 1950-60s California mothers: A pilot study [J]. Environment International, 2009, 35(6): 937-942
    Sjödin A, Hagmar L, Klasson-Wehler E, et al. Influence of the consumption of fatty Baltic Sea fish on plasma levels of halogenated environmental contaminants in Latvian and Swedish men [J]. Environmental Health Perspectives, 2000, 108(11): 1035-1041
    Rylander C, Lund E, Frøyland L, et al. Predictors of PCP, OH-PCBs, PCBs and chlorinated pesticides in a general female Norwegian population [J]. Environment International, 2012, 43: 13-20
    Haraguchi K, Ito Y, Takagi M, et al. Levels, profiles and dietary sources of hydroxylated PCBs and hydroxylated and methoxylated PBDEs in Japanese women serum samples [J]. Environment International, 2016, 97: 155-162
    Nomiyama K, Murata S, Kunisue T, et al. Polychlorinated biphenyls and their hydroxylated metabolites (OH-PCBs) in the blood of toothed and baleen whales stranded along Japanese coastal waters [J]. Environmental Science & Technology, 2010, 44(10): 3732-3738
    Sandala G M, Sonne-Hansen C, Dietz R, et al. Hydroxylated and methyl sulfone PCB metabolites in adipose and whole blood of polar bear (Ursus maritimus) from East Greenland [J]. Science of the Total Environment, 2004, 331(1-3): 125-141
    Helgason L B, Arukwe A, Gabrielsen G W, et al. Biotransformation of PCBs in Arctic seabirds: Characterization of phase Ⅰ and Ⅱ pathways at transcriptional, translational and activity levels [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2010, 152(1): 34-41
    Wang T, Cook I, Leyh T S. The molecular basis of OH-PCB estrogen receptor activation [J]. Journal of Biological Chemistry, 2021, 296: 100353
    Grimm F A, Hu D F, Kania-Korwel I, et al. Metabolism and metabolites of polychlorinated biphenyls [J]. Critical Reviews in Toxicology, 2015, 45(3): 245-272
    Nomiyama K, Tsujisawa Y, Ashida E, et al. Mother to fetus transfer of hydroxylated polychlorinated biphenyl congeners (OH-PCBs) in the Japanese macaque (Macaca fuscata): Extrapolation of exposure scenarios to humans [J]. Environmental Science & Technology, 2020, 54(18): 11386-11395
    Takaguchi K, Nishikawa H, Mizukawa H, et al. Effects of PCB exposure on serum thyroid hormone levels in dogs and cats [J]. Science of the Total Environment, 2019, 688: 1172-1183
    Haijima A, Lesmana R, Shimokawa N, et al. Differential neurotoxic effects of in utero and lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) on spontaneous locomotor activity and motor coordination in young adult male mice [J]. The Journal of Toxicological Sciences, 2017, 42(4): 407-416
    Tehrani R, van Aken B. Hydroxylated polychlorinated biphenyls in the environment: Sources, fate, and toxicities [J]. Environmental Science and Pollution Research International, 2014, 21(10): 6334-6345
    Barmpas M, Vakonaki E, Tzatzarakis M, et al. Organochlorine pollutants’ levels in hair, amniotic fluid and serum samples of pregnant women in Greece. A cohort study [J]. Environmental Toxicology and Pharmacology, 2020, 73: 103279
    Fang S B, Cui Q, Dai X Y. Concentrations and accumulation rates of polychlorinated biphenyls in soil along an urban-rural gradient in Shanghai [J]. Environmental Science and Pollution Research International, 2020, 27(9): 8835-8845
    王帅, 乔艺飘, 黄宣运, 等. 2,2’,4,5,5’-五氯联苯在小鼠体内代谢产物的鉴定[J]. 分析化学, 2019, 47(12): 1951-1959

    Wang S, Qiao Y P, Huang X Y, et al. Identification of metabolites of 2,2’,4,5,5’-pentachlorodiphenyl in mice [J]. Chinese Journal of Analytical Chemistry, 2019, 47(12): 1951-1959 (in Chinese)

    史永富, 林洪, 黄冬梅, 等. 硅烷化衍生/气相色谱/电子捕获检测水产品中羟基多氯联苯的研究[J]. 分析测试学报, 2009, 28(5): 568-571

    Shi Y F, Lin H, Huang D M, et al. Study on determination of hydroxy-polychlorinated biphenyls in fishery products by silylation derivatization/GC/μECD [J]. Journal of Instrumental Analysis, 2009, 28(5): 568-571 (in Chinese)

    European Commission. Commission Decision EC 2002/657 of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results[EB/OL]. [2021-06-11]. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32002D0657
    European Commission.Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed[EB/OL]. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32002D0657
    Ohta C, Haraguchi K, Kato Y, et al. Distribution and excretion of 2,2’,3,4’,5,5’,6-heptachlorobiphenyl (CB187) and its metabolites in rats and Guinea pigs [J]. Chemosphere, 2015, 118: 5-11
    Kimura-Kuroda J, Nagata I, Kuroda Y. Hydroxylated metabolites of polychlorinated biphenyls inhibit thyroid-hormone-dependent extension of cerebellar Purkinje cell dendrites [J]. Developmental Brain Research, 2005, 154(2): 259-263
    Amano I, Miyazaki W, Iwasaki T, et al. The effect of hydroxylated polychlorinated biphenyl (OH-PCB) on thyroid hormone receptor (TR)-mediated transcription through native-thyroid hormone response element (TRE) [J]. Industrial Health, 2010, 48(1): 115-118
    Ucán-Marin F, Arukwe A, Mortensen A S, et al. Recombinant albumin and transthyretin transport proteins from two gull species and human: Chlorinated and brominated contaminant binding and thyroid hormones [J]. Environmental Science & Technology, 2010, 44(1): 497-504
    Gutleb A C, Cenijn P, Velzen M V, et al. In vitro assay shows that PCB metabolites completely saturate thyroid hormone transport capacity in blood of wild polar bears (Ursus maritimus) [J]. Environmental Science & Technology, 2010, 44(8): 3149-3154
    Miyazaki W, Iwasaki T, Takeshita A, et al. Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism [J]. Journal of Biological Chemistry, 2004, 279(18): 18195-18202
    Li X S, Wu X N, Kelly K M, et al. Toxicokinetics of chiral PCB 136 and its hydroxylated metabolites in mice with a liver-specific deletion of cytochrome P450 reductase [J]. Chemical Research in Toxicology, 2019, 32(4): 727-736
    Quinete N, Esser A, Kraus T, et al. Determination of hydroxylated polychlorinated biphenyls (OH-PCBs) in human urine in a highly occupationally exposed German cohort: New prospects for urinary biomarkers of PCB exposure [J]. Environment International, 2016, 97: 171-179
    Quinete N, Schettgen T, Bertram J, et al. Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: A review [J]. Environmental Science and Pollution Research International, 2014, 21(20): 11951-11972
  • 加载中
计量
  • 文章访问数:  1421
  • HTML全文浏览数:  1421
  • PDF下载数:  37
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-06-11

羟基多氯联苯在小鼠体内的蓄积及迁移特征

    通讯作者: 史永富, E-mail: xyzmn530@sina.com
    作者简介: 王梦圆(1997—),男,硕士研究生,研究方向为水产品质量安全与控制,E-mail: mnwang_nn@163.com
  • 1. 上海海洋大学食品学院,上海 201306;
  • 2. 中国水产科学研究院东海水产研究所,水产品质量安全与加工研究室,上海 200090
基金项目:

国家自然科学基金资助项目(31501572)

摘要: 羟基多氯联苯(hydroxylated polychlorinated biphenyls, OH-PCBs)作为多氯联苯(polychlorinated biphenyls, PCBs)在生物体内的主要代谢产物之一,能够通过食物链传递在高等动物体内产生蓄积并对其生命健康造成危害。本研究旨在探索OH-PCBs通过水产品摄食途径暴露后,在模式生物体内的蓄积和迁移规律。以鲫鱼为水产品代表,以小鼠为研究对象,向鲫鱼可食性组织添加3-OH-PCB101和4-OH-PCB101的混合标准溶液(1 000 ng·mL-1)制作加标饲料,并以小鼠每日摄食总量的10%对其进行投喂。分别在暴露实验的第12、24、72和168小时解剖取样,并收集粪便。检测结果显示,2种OH-PCB101在胃、肠等消化组织器官的浓度高于其他组织并能随着粪便排出,且倾向于在含血量较高的组织(如心、肺和脾)中蓄积。OH-PCB101在各组织中的蓄积量由高到低依次为大肠>胃>小肠>脾≈肺>心>肝>肾>血液≈脑>肌肉≈睾丸。同时发现在脑、心、肺、肝、肾、性腺、肌肉等组织样品中,4-OH-PCB101的蓄积浓度始终高于3-OH-PCB101。这表明,虽然通过水产品摄入的OH-PCB101主要通过粪便排出体外,然而在脑、心、肺、肝、胃和脾等11个组织及血液中均产生蓄积,并且2种OH-PCB101可能由于结构不同导致其在各组织中的蓄积量存在差异。本研究有助于揭示OH-PCBs通过摄食暴露后在生物体内的蓄积分布及排泄等归趋问题,同时表明在环境及生物体中蓄积的OH-PCBs等二代持久性污染物对人体健康仍存在潜在威胁。

English Abstract

参考文献 (41)

目录

/

返回文章
返回