典型杀虫剂类内分泌干扰物对水生溞类的毒性效应研究进展

赵倩, 戚钱菊, 郭家骅, 李琦. 典型杀虫剂类内分泌干扰物对水生溞类的毒性效应研究进展[J]. 生态毒理学报, 2022, 17(1): 137-149. doi: 10.7524/AJE.1673-5897.20210707001
引用本文: 赵倩, 戚钱菊, 郭家骅, 李琦. 典型杀虫剂类内分泌干扰物对水生溞类的毒性效应研究进展[J]. 生态毒理学报, 2022, 17(1): 137-149. doi: 10.7524/AJE.1673-5897.20210707001
Zhao Qian, Qi Qianju, Guo Jiahua, Li Qi. Research Progress on Toxic Effects of Typical Pesticides Endocrine Disruptor on Aquatic Flea[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 137-149. doi: 10.7524/AJE.1673-5897.20210707001
Citation: Zhao Qian, Qi Qianju, Guo Jiahua, Li Qi. Research Progress on Toxic Effects of Typical Pesticides Endocrine Disruptor on Aquatic Flea[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 137-149. doi: 10.7524/AJE.1673-5897.20210707001

典型杀虫剂类内分泌干扰物对水生溞类的毒性效应研究进展

    作者简介: 赵倩(1997-),女,硕士研究生,研究方向为生态毒理学,E-mail:410792698@qq.com
    通讯作者: 李琦, E-mail: qili726@nwu.edu.cn
  • 基金项目:

    科技部第二次青藏高原综合科学考察研究(2019QZKK1003)

    陕西省重点研发计划(2020SF-400)

    陕西水利科技计划(2020slkj-13)

  • 中图分类号: X171.5

Research Progress on Toxic Effects of Typical Pesticides Endocrine Disruptor on Aquatic Flea

    Corresponding author: Li Qi, qili726@nwu.edu.cn
  • Fund Project:
  • 摘要: 内分泌干扰物(endocrine disrupting chemicals,EDCs),尤其是具有内分泌干扰效应的杀虫剂,因能显著影响水生生物的生长发育和生殖系统,其潜在生态毒性效应引起了人们的广泛关注。溞类在水生生态系统食物链中起着重要的连接作用,更易受到水体中残留的杀虫剂类EDCs的影响,其毒性效应在水生生态系统毒理学研究中有着重要的意义。本文重点综述了杀虫剂类EDCs对溞类产生的生长发育毒性和生殖毒性,从酶活性变化角度分析由此产生的氧化应激和神经毒性,并在基因表达水平上揭示其毒性作用机制,发现杀虫剂类EDCs通过扰乱神经系统和内分泌系统发挥作用,并展望了杀虫剂EDCs在联合毒性、多代效应的研究前景,旨在为研究杀虫剂类EDCs对大型溞的毒性作用和生态环境风险评估提供依据。
  • 加载中
  • 方琪,马彦博,张思远,等.农药内分泌干扰效应研究进展[J].生态毒理学报, 2017, 12(1):98-110

    Fang Q, Ma Y B, Zhang S Y, et al. Research progress in endocrine disrupting effects of pesticides[J]. Asian Journal of Ecotoxicology, 2017, 12(1):98-110(in Chinese)

    Gore A C, Chappell V A, Fenton S E, et al. EDC-2:The endocrine society's second scientific statement on endocrine-disrupting chemicals[J]. Endocrine Reviews, 2015, 36(6):E1-E150
    杨会会.湖北省地表水中有机磷农药的分布和健康风险评价[D].武汉:华中师范大学, 2014, 12(2):13-36
    吕潇,李慧冬,杜红霞,等.农药类内分泌干扰物的研究进展[J].华中农业大学学报, 2006, 25(1):94-100

    Lv X, Li H D, Du H X, et al. Advances in endocrine disrupting pesticides[J]. Journal of Huazhong Agricultural University:Natural Science Edition, 2006, 25(1):94-100(in Chinese)

    Juberg D R, Borghoff S J, Becker R A, et al. Lessons learned, challenges, and opportunities:The US endocrine disruptor screening program[J]. ALTEX, 2014, 31(1):63-78
    Jordão R, Casas J, Fabrias G, et al. Obesogens beyond vertebrates:Lipid perturbation by tributyltin in the crustacean Daphnia magna [J]. Environmental Health Perspectives, 2015, 123(8):813-819
    Jeong T Y, Simpson M J. Reproduction stage specific dysregulation of Daphnia magna metabolites as an early indicator of reproductive endocrine disruption[J]. Water Research, 2020, 184:116107
    Han S, Choi K, Kim J, et al. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka ( Oryzias latipes ) and freshwater cladocerans Daphnia magna and Moina macrocopa [J]. Aquatic Toxicology, 2010, 98(3):256-264
    Printes L B, Fellowes M D E, Callaghan A. Clonal variation in acetylcholinesterase biomarkers and life history traits following OP exposure in Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2008, 71(2):519-526
    Ivorra L, Cardoso P G, Chan S K, et al. Environmental characterization of 4,4'-dichlorobenzophenone in surface waters from Macao and Hong Kong coastal areas (Pearl River Delta) and its toxicity on two biological models: Artemia salina and Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2019, 171:1-11
    Organization for Economic Co-Operation and Development (OECD). Test No. 202: Daphnia sp. Acute immobilisation test[R]. Paris:OECD, 2004
    Organization for Economic Co-Operation and Development (OECD). Test No. 211: Daphnia magna reproduction test[R]. Paris:OECD, 2012
    Toumi H, Boumaiza M, Millet M, et al. Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains of Daphnia magna (Crustacea, Cladocera)[J]. Science of the Total Environment, 2013, 458-460:47-53
    Kim Y, Jung J, Oh S, et al. Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzias latipes [J]. Journal of Environmental Science and Health, Part B, 2008, 43(1):56-64
    Mokry L E, Hoagland K D. Acute toxicities of five synthetic pyrethroid insecticides to Daphnia magna and Ceriodaphnia dubia [J]. Environmental Toxicology and Chemistry, 1990, 9(8):1045
    Toyota K, Williams T D, Sato T, et al. Comparative ovarian microarray analysis of juvenile hormone-responsive genes in water flea Daphnia magna :Potential targets for toxicity[J]. Journal of Applied Toxicology, 2017, 37(3):374-381
    Villarroel M J, Sancho E, Ferrando M D, et al. Effect of an acaricide on the reproduction and survival of Daphnia magna [J]. Bulletin of Environmental Contamination and Toxicology, 1999, 63(2):167-173
    Haeba M H, Hilscherová K, Mazurová E, et al. Selected endocrine disrupting compounds (vinclozolin, flutamide, ketoconazole and dicofol):Effects on survival, occurrence of males, growth, molting and reproduction of Daphnia magna [J]. Environmental Science and Pollution Research International, 2008, 15(3):222-227
    Hernando M D, Ejerhoon M, Fernández-Alba A R, et al. Combined toxicity effects of MTBE and pesticides measured with Vibrio fischeri and Daphnia magna bioassays[J]. Water Research, 2003, 37(17):4091-4098
    Palma P, Palma V L, Fernandes R M, et al. Acute toxicity of atrazine, endosulfan sulphate and chlorpyrifos to Vibrio fischeri , Thamnocephalus platyurus and Daphnia magna , relative to their concentrations in surface waters from the Alentejo Region of Portugal[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(5):485-489
    Ren Z M, Li Z L, Zha J M, et al. The avoidance responses of Daphnia magna to the exposure of organophosphorus pesticides in an on-line biomonitoring system[J]. Environmental Modeling&Assessment, 2009, 14(3):405-410
    Hartgers E M, Heugens E H, Deneer J W. Effect of lindane on the clearance rate of Daphnia magna [J]. Archives of Environmental Contamination and Toxicology, 1999, 36(4):399-404
    Bettinetti R, Croce V, Noè F, et al. Ecotoxicity of p,p'-DDE to Daphnia magna [J]. Ecotoxicology, 2013, 22(8):1255-1263
    Manar R, Bessi H, Vasseur P. Reproductive effects and bioaccumulation of chlordane in Daphnia magna [J]. Environmental Toxicology and Chemistry, 2009, 28(10):2150-2159
    Qiu X C, Tanoue W, Kawaguchi A, et al. Interaction patterns and toxicities of binary and ternary pesticide mixtures to Daphnia magna estimated by an accelerated failure time model[J]. Science of the Total Environment, 2017, 607-608:367-374
    Trac L N, Andersen O, Palmqvist A. Deciphering mechanisms of malathion toxicity under pulse exposure of the freshwater cladoceran Daphnia magna [J]. Environmental Toxicology and Chemistry, 2016, 35(2):394-404
    Andersen T H, Tjørnhøj R, Wollenberger L, et al. Acute and chronic effects of pulse exposure of Daphnia magna to dimethoate and pirimicarb[J]. Environmental Toxicology and Chemistry, 2006, 25(5):1187-1195
    Liess M, von der Ohe P C. Analyzing effects of pesticides on invertebrate communities in streams[J]. Environmental Toxicology and Chemistry, 2005, 24(4):954-965
    Demetrio P M, Bonetto C, Ronco A E. The effect of cypermethrin, chlorpyrifos, and glyphosate active ingredients and formulations on Daphnia magna (Straus)[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(3):268-273
    George T K, Liber K. Laboratory investigation of the toxicity and interaction of pesticide mixtures in Daphnia magna [J]. Archives of Environmental Contamination and Toxicology, 2007, 52(1):64-72
    Matsumoto T, Ikuno E, Itoi S, et al. Chemical sensitivity of the male daphnid, Daphnia magna , induced by exposure to juvenile hormone and its analogs[J]. Chemosphere, 2008, 72(3):451-456
    Coors A, Vanoverbeke J, de Bie T, et al. Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna [J]. Aquatic Toxicology, 2009, 95(1):71-79
    Wilsont P C, Foos J F. Survey of carbamate and organophosphorous pesticide export from a South Florida (U.S.A.) agricultural watershed:Implications of sampling frequency on ecological risk estimation[J]. Environmental Toxicology and Chemistry, 2006, 25(11):2847-2852
    Pfaff J, Reinwald H, Ayobahan S U, et al. Toxicogenomic differentiation of functional responses to fipronil and imidacloprid in Daphnia magna [J]. Aquatic Toxicology, 2021, 238:105927
    Gauthier J R, Mabury S A. The sulfoximine insecticide sulfoxaflor and its photodegradate demonstrate acute toxicity to the nontarget invertebrate species Daphnia magna [J]. Environmental Toxicology and Chemistry, 2021, 40(8):2156-2164
    Ginjupalli G K, Baldwin W S. The time-and age-dependent effects of the juvenile hormone analog pesticide, pyriproxyfen on Daphnia magna reproduction[J]. Chemosphere, 2013, 92(9):1260-1266
    Barata C, Solayan A, Porte C. Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna [J]. Aquatic Toxicology, 2004, 66(2):125-139
    Xuereb B, Noury P, Felten V, et al. Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda):Characterization and effects of chlorpyrifos[J]. Toxicology, 2007, 236(3):178-189
    Oda S, Tatarazako N, Watanabe H, et al. Genetic differences in the production of male neonates in Daphnia magna exposed to juvenile hormone analogs[J]. Chemosphere, 2006, 63(9):1477-1484
    Abe R, Toyota K, Miyakawa H, et al. Diofenolan induces male offspring production through binding to the juvenile hormone receptor in Daphnia magna [J]. Aquatic Toxicology, 2015, 159:44-51
    Goto T, Hiromi J. Toxicity of 17alpha-ethynylestradiol and norethindrone, constituents of an oral contraceptive pill to the swimming and reproduction of cladoceran Daphnia magna , with special reference to their synergetic effect[J]. Marine Pollution Bulletin, 2003, 47(1-6):139-142
    Baer K N, Owens K D. Evaluation of selected endocrine disrupting compounds on sex determination in Daphnia magna using reduced photoperiod and different feeding rates[J]. Bulletin of Environmental Contamination and Toxicology, 1999, 62(2):214-221
    Palma P, Palma V L, Matos C, et al. Assessment of the pesticides atrazine, endosulfan sulphate and chlorpyrifos for juvenoid-related endocrine activity using Daphnia magna [J]. Chemosphere, 2009, 76(3):335-340
    Kim J, Kim Y, Lee S, et al. Determination of mRNA expression of DMRT93B, vitellogenin, and cuticle 12 in Daphnia magna and their biomarker potential for endocrine disruption[J]. Ecotoxicology, 2011, 20(8):1741-1748
    Navis S, Waterkeyn A, Voet T, et al. Pesticide exposure impacts not only hatching of dormant eggs, but also hatchling survival and performance in the water flea Daphnia magna [J]. Ecotoxicology, 2013, 22(5):803-814
    Religia P, Kato Y, Fukushima E O, et al. Atrazine exposed phytoplankton causes the production of non-viable offspring on Daphnia magna [J]. Marine Environmental Research, 2019, 145:177-183
    Lampert W, Lampert K P, Larsson P. Induction of male production in clones of Daphnia pulex by the juvenoid hormone methyl farnesoate under short photoperiod[J]. Comparative Biochemistry and Physiology Toxicology&Pharmacology, 2012, 156(2):130-133
    Oda S, Tatarazako N, Watanabe H, et al. Production of male neonates in Daphnia magna (Cladocera, Crustacea) exposed to juvenile hormones and their analogs[J]. Chemosphere, 2005, 61(8):1168-1174
    Kopp A. Dmrt genes in the development and evolution of sexual dimorphism[J]. Trends in Genetics, 2012, 28(4):175-184
    Marín I, Baker B S. The evolutionary dynamics of sex determination[J]. Science, 1998, 281(5385):1990-1994
    Palma P, Palma V L, Fernandes R M, et al. Endosulfan sulphate interferes with reproduction, embryonic development and sex differentiation in Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2009, 72(2):344-350
    Olmstead A W, LeBlanc G A. Insecticidal juvenile hormone analogs stimulate the production of male offspring in the crustacean Daphnia magna [J]. Environmental Health Perspectives, 2003, 111(7):919-924
    de Souza Machado A A, Zarfl C, Rehse S, et al. Low-dose effects:Nonmonotonic responses for the toxicity of a Bacillus thuringiensis biocide to Daphnia magna [J]. Environmental Science&Technology, 2017, 51(3):1679-1686
    Tatarazako N, Oda S. The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans[J]. Ecotoxicology, 2007, 16(1):197-203
    Navis S, Waterkeyn A, de Meester L, et al. Acute and chronic effects of exposure to the juvenile hormone analog fenoxycarb during sexual reproduction in Daphnia magna [J]. Ecotoxicology, 2018, 27(5):627-634
    Tatarazako N, Oda S, Watanabe H, et al. Juvenile hormone agonists affect the occurrence of male Daphnia [J]. Chemosphere, 2003, 53(8):827-833
    Davies R, Zou E M. Polybrominated diphenyl ethers disrupt molting in neonatal Daphnia magna [J]. Ecotoxicology, 2012, 21(5):1371-1380
    Watanabe H, Oda S, Abe R, et al. Comparison of the effects of constant and pulsed exposure with equivalent time-weighted average concentrations of the juvenile hormone analog pyriproxyfen on the reproduction of Daphnia magna [J]. Chemosphere, 2018, 195:810-816
    Hassold E, Backhaus T. Chronic toxicity of five structurally diverse demethylase-inhibiting fungicides to the crustacean Daphnia magna :A comparative assessment[J]. Environmental Toxicology and Chemistry, 2009, 28(6):1218-1226
    Song Y, Evenseth L M, Iguchi T, et al. Release of chitobiase as an indicator of potential molting disruption in juvenile Daphnia magna exposed to the ecdysone receptor agonist 20-hydroxyecdysone[J]. Journal of Toxicology and Environmental Health, Part A, 2017, 80(16-18):954-962
    Zou E M, Fingerman M. Effects of estrogenic xenobiotics on molting of the water flea, Daphnia magna [J]. Ecotoxicology and Environmental Safety, 1997, 38(3):281-285
    Masteling R P, Castro B B, Antunes S C, et al. Whole-organism and biomarker endpoints in Daphnia magna show uncoupling of oxidative stress and endocrine disruption in phenolic derivatives[J]. Ecotoxicology and Environmental Safety, 2016, 134:64-71
    Liu T, He Z R. Vessel segmentation using principal component based threshold algorithm[C]. Nanchang:2019 Chinese Control and Decision Conference (CCDC), 2019:2739-2741
    Hassold E, Backhaus T. Chronic toxicity of five structurally diverse demethylase-inhibiting fungicides to the crustacean Daphnia magna :A comparative assessment[J]. Environmental Toxicology and Chemistry, 2009, 28(6):1218-1226
    Scott G R, Sloman K A. The effects of environmental pollutants on complex fish behaviour:Integrating behavioural and physiological indicators of toxicity[J]. Aquatic Toxicology, 2004, 68(4):369-392
    Toumi H, Boumaiza M, Millet M, et al. Is acetylcholinesterase a biomarker of susceptibility in Daphnia magna (Crustacea, Cladocera) after deltamethrin exposure?[J]. Chemosphere, 2015, 120:351-356
    Kotikova E A, Raikova O I, Flyatchinskaya L P, et al. Rotifer muscles as revealed by phalloidin-TRITC staining and confocal scanning laser microscopy[J]. Acta Zoologica, 2001, 82(1):1-9
    Fukuto T R. Mechanism of action of organophosphorus and carbamate insecticides[J]. Environmental Health Perspectives, 1990, 87:245-254
    Ubaid ur Rahman H, Asghar W, Nazir W, et al. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption:Evidence of mechanisms, exposures and mitigation strategies[J]. Science of the Total Environment, 2021, 755:142649
    Venkatalaxmi A, Padmavathi B S, Amaranath T. A general solution of unsteady Stokes equations[J]. Fluid Dynamics Research, 2004, 35(3):229-236
    Casida J E. Esterase inhibitors as pesticides:Because of favorable biological properties they are displacing other types of established compounds[J]. Science, 1964, 146(3647):1011-1017
    Ren Z M, Zhang X, Wang X G, et al. AChE inhibition:One dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure[J]. Chemosphere, 2015, 120:252-257
    Crivellente F, Hart A. Establishment of cumulative assessment groups of pesticides for their effects on the nervous system[J]. EFSA Journal, 2019, 17(9):e05800
    巩宁,孟紫强,邵魁双,等.水蚤分子生态毒理学研究进展[J].生态毒理学报, 2020, 15(2):11-18

    Gong N, Meng Z Q, Shao K S, et al. Advances in ecotoxicogenomics with water fleas[J]. Asian Journal of Ecotoxicology, 2020, 15(2):11-18(in Chinese)

    Masteling R P, Castro B B, Antunes S C, et al. Whole-organism and biomarker endpoints in Daphnia magna show uncoupling of oxidative stress and endocrine disruption in phenolic derivatives[J]. Ecotoxicology and Environmental Safety, 2016, 134:64-71
    Baldwin W S, Graham S E, Shea D M, et al. Metabolic androgenization of female Daphnia magna by the xenoestrogen 4-nonylphenol[J]. Environmental Toxicology and Chemistry, 1997, 16(9):1905
    Toyota K, Kato Y, Sato M, et al. Molecular cloning of doublesex genes of four Cladocera (water flea) species[J]. BMC Genomics, 2013, 14:239
    Ignace D D, Dodson S I, Kashian D R. Identification of the critical timing of sex determination in Daphnia magna (Crustacea, Branchiopoda) for use in toxicological studies[J]. Hydrobiologia, 2011, 668(1):117-123
    Kato Y, Kobayashi K, Watanabe H, et al. Environmental sex determination in the branchiopod crustacean Daphnia magna :Deep conservation of a doublesex gene in the sex-determining pathway[J]. PLoS Genetics, 2011, 7(3):e1001345
    Toyota K, Miyakawa H, Yamaguchi K, et al. NMDA receptor activation upstream of methyl farnesoate signaling for short day-induced male offspring production in the water flea, Daphnia pulex [J]. BMC Genomics, 2015, 16(1):186
    Wuerz M, Whyard S, Loadman N L, et al. Sex determination and gene expression in Daphnia magna exposed to juvenile hormone[J]. Journal of Plankton Research, 2019, 41(4):393-406
    Puckowski A, Stolte S, Wagil M, et al. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna [J]. International Journal of Hygiene and Environmental Health, 2017, 220(3):575-582
  • 加载中
计量
  • 文章访问数:  1617
  • HTML全文浏览数:  1617
  • PDF下载数:  89
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-07-07

典型杀虫剂类内分泌干扰物对水生溞类的毒性效应研究进展

    通讯作者: 李琦, E-mail: qili726@nwu.edu.cn
    作者简介: 赵倩(1997-),女,硕士研究生,研究方向为生态毒理学,E-mail:410792698@qq.com
  • 西北大学城市与环境学院, 西安 710100
基金项目:

科技部第二次青藏高原综合科学考察研究(2019QZKK1003)

陕西省重点研发计划(2020SF-400)

陕西水利科技计划(2020slkj-13)

摘要: 内分泌干扰物(endocrine disrupting chemicals,EDCs),尤其是具有内分泌干扰效应的杀虫剂,因能显著影响水生生物的生长发育和生殖系统,其潜在生态毒性效应引起了人们的广泛关注。溞类在水生生态系统食物链中起着重要的连接作用,更易受到水体中残留的杀虫剂类EDCs的影响,其毒性效应在水生生态系统毒理学研究中有着重要的意义。本文重点综述了杀虫剂类EDCs对溞类产生的生长发育毒性和生殖毒性,从酶活性变化角度分析由此产生的氧化应激和神经毒性,并在基因表达水平上揭示其毒性作用机制,发现杀虫剂类EDCs通过扰乱神经系统和内分泌系统发挥作用,并展望了杀虫剂EDCs在联合毒性、多代效应的研究前景,旨在为研究杀虫剂类EDCs对大型溞的毒性作用和生态环境风险评估提供依据。

English Abstract

参考文献 (82)

目录

/

返回文章
返回