纳米银诱导细胞自噬的分子机制和生物效应

侯巧利, 汪毅宁, 赵晓旭, 吕源财. 纳米银诱导细胞自噬的分子机制和生物效应[J]. 生态毒理学报, 2022, 17(1): 129-136. doi: 10.7524/AJE.1673-5897.20210224001
引用本文: 侯巧利, 汪毅宁, 赵晓旭, 吕源财. 纳米银诱导细胞自噬的分子机制和生物效应[J]. 生态毒理学报, 2022, 17(1): 129-136. doi: 10.7524/AJE.1673-5897.20210224001
Hou Qiaoli, Wang Yining, Zhao Xiaoxu, Lv Yuancai. Molecular Mechanism and Biological Effects of Silver Nanoparticles-induced Autophagy[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 129-136. doi: 10.7524/AJE.1673-5897.20210224001
Citation: Hou Qiaoli, Wang Yining, Zhao Xiaoxu, Lv Yuancai. Molecular Mechanism and Biological Effects of Silver Nanoparticles-induced Autophagy[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 129-136. doi: 10.7524/AJE.1673-5897.20210224001

纳米银诱导细胞自噬的分子机制和生物效应

    作者简介: 侯巧利(1995-),女,硕士研究生,研究方向为环境毒理学,E-mail:houqiaoli126@126.com
    通讯作者: 赵晓旭, E-mail: zhaoxiaoxu@ptu.edu.cn 吕源财, E-mail: yclv@fzu.edu.cn
  • 基金项目:

    国家自然科学基金青年基金资助项目(31801462)

    福建省自然科学基金面上项目(2021J011105)

    福建省自然科学基金青年基金资助项目(2020J05211)

    福建省大学生创新创业训练项目(S201911498055,S202111498004)

    莆田学院引进人才科研启动项目(2018055)

    福建省高校杰出青年科研人才培育计划资助项目

  • 中图分类号: X171.5

Molecular Mechanism and Biological Effects of Silver Nanoparticles-induced Autophagy

    Corresponding authors: Zhao Xiaoxu, zhaoxiaoxu@ptu.edu.cn ;  Lv Yuancai, yclv@fzu.edu.cn
  • Fund Project:
  • 摘要: 细胞自噬对维持细胞的生长代谢以及细胞内环境稳态具有重要意义。近年来,纳米银(silver nanoparticles,AgNPs)与细胞自噬的关系逐渐被揭示。深入了解AgNPs诱导的细胞自噬效应有助于其在医药领域的进一步应用,也能为全面评估AgNPs的纳米毒性提供科学依据。本文重点介绍AgNPs诱导细胞自噬的机制及其涉及的主要信号通路,通过探讨不同理化性质的AgNPs诱导自噬的不同结果及机制,归纳总结AgNPs诱导细胞自噬的生物效应,以期为全面认识AgNPs的自噬效应提供科学依据。
  • 加载中
  • Chugh H, Sood D, Chandra I, et al. Role of gold and silver nanoparticles in cancer nano-medicine[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(Suppl.1):1210-1220
    Zheng K Y, Setyawati M I, Leong D T, et al. Antimicrobial silver nanomaterials[J]. Coordination Chemistry Reviews, 2018, 357:1-17
    Bondarenko O, Juganson K, Ivask A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro :A critical review[J]. Archives of Toxicology, 2013, 87(7):1181-1200
    Cameron S J, Hosseinian F, Willmore W G. A current overview of the biological and cellular effects of nanosilver[J]. International Journal of Molecular Sciences, 2018, 19(7):2030
    Flores-López L Z, Espinoza-Gómez H, Somanathan R. Silver nanoparticles:Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review[J]. Journal of Applied Toxicology, 2019, 39(1):16-26
    Jia M X, Zhang W J, He T J, et al. Evaluation of the genotoxic and oxidative damage potential of silver nanoparticles in human NCM460 and HCT116 cells[J]. International Journal of Molecular Sciences, 2020, 21(5):E1618
    Mao B H, Tsai J C, Chen C W, et al. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy[J]. Nanotoxicology, 2016, 10(8):1021-1040
    Chen Y, Wang M, Zhang T K, et al. Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposure[J]. Ecotoxicology and Environmental Safety, 2018, 166:71-77
    Glick D, Barth S, Macleod K F. Autophagy:Cellular and molecular mechanisms[J]. The Journal of Pathology, 2010, 221(1):3-12
    Miyayama T, Fujiki K, Matsuoka M. Silver nanoparticles induce lysosomal-autophagic defects and decreased expression of transcription factor EB in A549 human lung adenocarcinoma cells[J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2018, 46:148-154
    Shintani T, Klionsky D J. Autophagy in health and disease:A double-edged sword[J]. Science, 2004, 306(5698):990-995
    Sheng J, Sun L B, Zhao S F, et al. Acidic stress induces protective autophagy in SGC7901 cells[J]. The Journal of International Medical Research, 2018, 46(8):3285-3295
    Jiang Y W, Gao G, Jia H R, et al. Copper oxide nanoparticles induce enhanced radiosensitizing effect via destructive autophagy[J]. ACS Biomaterials Science&Engineering, 2019, 5(3):1569-1579
    Mizushima N, Noda T, Yoshimori T, et al. A protein conjugation system essential for autophagy[J]. Nature, 1998, 395(6700):395-398
    Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation[J]. Annual Review of Cell and Developmental Biology, 2011, 27:107-132
    Lee Y H, Cheng F Y, Chiu H W, et al. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts[J]. Biomaterials, 2014, 35(16):4706-4715
    Zhu L Y, Guo D W, Sun L L, et al. Activation of autophagy by elevated reactive oxygen species rather than released silver ions promotes cytotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in hematopoietic cells[J]. Nanoscale, 2017, 9(17):5489-5498
    Li J Y, Zhang B Y, Chang X R, et al. Silver nanoparticles modulate mitochondrial dynamics and biogenesis in HepG2 cells[J]. Environmental Pollution, 2020, 256:113430
    Schwarz D S, Blower M D. The endoplasmic reticulum:Structure, function and response to cellular signaling[J]. Cellular and Molecular Life Sciences, 2016, 73(1):79-94
    Li L, Li L, Zhou X J, et al. Silver nanoparticles induce protective autophagy via Ca2+/CaMKK β /AMPK/mTOR pathway in SH-SY5Y cells and rat brains[J]. Nanotoxicology, 2019, 13(3):369-391
    Chen Y, Yang T, Chen S Q, et al. Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cells[J]. Journal of Biochemical and Molecular Toxicology, 2020, 34(5):e22474
    Liu G Y, Sabatini D M. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nature Reviews Molecular Cell Biology, 2020, 21(4):183-203
    Settembre C, Zoncu R, Medina D L, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB[J]. The EMBO Journal, 2012, 31(5):1095-1108
    Lin J, Liu Y M, Wu H, et al. Key role of TFEB nucleus translocation for silver nanoparticle-induced cytoprotective autophagy[J]. Small, 2018, 14(13):e1703711
    Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nature Cell Biology, 2011, 13(2):132-141
    Mihaylova M M, Shaw R J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism[J]. Nature Cell Biology, 2011, 13(9):1016-1023
    AshaRani P V, Low Kah Mun G, Hande M P, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells[J]. ACS Nano, 2009, 3(2):279-290
    Zhivotovsky B, Orrenius S. Calcium and cell death mechanisms:A perspective from the cell death community[J]. Cell Calcium, 2011, 50(3):211-221
    Yu J S L, Cui W. Proliferation, survival and metabolism:The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination[J]. Development, 2016, 143(17):3050-3060
    Li H Y, Chen J Q, Fan H Z, et al. Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures[J]. Nanoscale, 2020, 12(11):6429-6437
    Hou J, Zhao L, Tang H Q, et al. Silver nanoparticles induced oxidative stress and mitochondrial injuries mediated autophagy in HC11 cells through Akt/AMPK/mTOR pathway[J]. Biological Trace Element Research, 2021, 199(3):1062-1073
    Zhang S M, Shang Z F, Zhou P K. Autophagy as the effector and player in DNA damage response of cells to genotoxicants[J]. Toxicology Research, 2015, 4(3):613-622
    Lorin S, Pierron G, Ryan K M, et al. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy[J]. Autophagy, 2010, 6(1):153-154
    Zielinska E, Zauszkiewicz-Pawlak A, Wojcik M, et al. Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma[J]. Oncotarget, 2018, 9(4):4675-4697
    Blanco J, Tomás-Hernández S, García T, et al. Oral exposure to silver nanoparticles increases oxidative stress markers in the liver of male rats and deregulates the insulin signalling pathway and p53 and cleaved caspase 3 protein expression[J]. Food and Chemical Toxicology, 2018, 115:398-404
    Medina D L, di Paola S, Peluso I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB[J]. Nature Cell Biology, 2015, 17(3):288-299
    Fageria L, Pareek V, Dilip R V, et al. Biosynthesized protein-capped silver nanoparticles induce ROS-dependent proapoptotic signals and prosurvival autophagy in cancer cells[J]. ACS Omega, 2017, 2(4):1489-1504
    Fageria L, Bambroo V, Mathew A, et al. Functional autophagic flux regulates AgNP uptake and the internalized nanoparticles determine tumor cell fate by temporally regulating flux[J]. International Journal of Nanomedicine, 2019, 14:9063-9076
    Wu H, Lin J, Liu P D, et al. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs[J]. Biomaterials, 2016, 101:1-9
    Lin J, Huang Z H, Wu H, et al. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles[J]. Autophagy, 2014, 10(11):2006-2020
    Skalska J, Dąbrowska-Bouta B, Frontczak-Baniewicz M, et al. A low dose of nanoparticulate silver induces mitochondrial dysfunction and autophagy in adult rat brain[J]. Neurotoxicity Research, 2020, 38(3):650-664
    Zhang H F, Bosch-Marce M, Shimoda L A, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J]. The Journal of Biological Chemistry, 2008, 283(16):10892-10903
    Papandreou I, Lim A L, Laderoute K, et al. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L[J]. Cell Death and Differentiation, 2008, 15(10):1572-1581
    Day E A, Ford R J, Steinberg G R. AMPK as a therapeutic target for treating metabolic diseases[J]. Trends in Endocrinology&Metabolism, 2017, 28(8):545-560
    Lee Y H, Fang C Y, Chiu H W, et al. Endoplasmic reticulum stress-triggered autophagy and lysosomal dysfunction contribute to the cytotoxicity of amine-modified silver nanoparticles in NIH 3T3 cells[J]. Journal of Biomedical Nanotechnology, 2017, 13(7):778-794
    Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress[J]. Molecular and Cellular Biology, 2006, 26(24):9220-9231
    Mishra A R, Zheng J W, Tang X, et al. Silver nanoparticle-induced autophagic-lysosomal disruption and NLRP3-inflammasome activation in HepG2 cells is size-dependent[J]. Toxicological Sciences, 2016, 150(2):473-487
  • 加载中
计量
  • 文章访问数:  1691
  • HTML全文浏览数:  1691
  • PDF下载数:  42
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-02-24

纳米银诱导细胞自噬的分子机制和生物效应

    通讯作者: 赵晓旭, E-mail: zhaoxiaoxu@ptu.edu.cn ;  吕源财, E-mail: yclv@fzu.edu.cn
    作者简介: 侯巧利(1995-),女,硕士研究生,研究方向为环境毒理学,E-mail:houqiaoli126@126.com
  • 1. 福州大学环境与资源学院, 福州 350108;
  • 2. 莆田学院环境与生物工程学院, 莆田 351100;
  • 3. 福建省新型污染物毒理效应与控制重点实验室, 莆田 351100;
  • 4. 生态环境及其信息图谱福建省高等学校重点实验室, 莆田 351100
基金项目:

国家自然科学基金青年基金资助项目(31801462)

福建省自然科学基金面上项目(2021J011105)

福建省自然科学基金青年基金资助项目(2020J05211)

福建省大学生创新创业训练项目(S201911498055,S202111498004)

莆田学院引进人才科研启动项目(2018055)

福建省高校杰出青年科研人才培育计划资助项目

摘要: 细胞自噬对维持细胞的生长代谢以及细胞内环境稳态具有重要意义。近年来,纳米银(silver nanoparticles,AgNPs)与细胞自噬的关系逐渐被揭示。深入了解AgNPs诱导的细胞自噬效应有助于其在医药领域的进一步应用,也能为全面评估AgNPs的纳米毒性提供科学依据。本文重点介绍AgNPs诱导细胞自噬的机制及其涉及的主要信号通路,通过探讨不同理化性质的AgNPs诱导自噬的不同结果及机制,归纳总结AgNPs诱导细胞自噬的生物效应,以期为全面认识AgNPs的自噬效应提供科学依据。

English Abstract

参考文献 (47)

目录

/

返回文章
返回