内分泌干扰物对核受体二聚化影响的研究进展

黄付晏, 陈钦畅, 谭皓月, 郭婧, 于南洋, 史薇, 于红霞. 内分泌干扰物对核受体二聚化影响的研究进展[J]. 生态毒理学报, 2021, 16(4): 17-31. doi: 10.7524/AJE.1673-5897.20201105004
引用本文: 黄付晏, 陈钦畅, 谭皓月, 郭婧, 于南洋, 史薇, 于红霞. 内分泌干扰物对核受体二聚化影响的研究进展[J]. 生态毒理学报, 2021, 16(4): 17-31. doi: 10.7524/AJE.1673-5897.20201105004
Huang Fuyan, Chen Qinchang, Tan Haoyue, Guo Jing, Yu Nanyang, Shi Wei, Yu Hongxia. Review on the Effects of Endocrine Disrupting Chemicals on Dimerization of Nuclear Receptors[J]. Asian Journal of Ecotoxicology, 2021, 16(4): 17-31. doi: 10.7524/AJE.1673-5897.20201105004
Citation: Huang Fuyan, Chen Qinchang, Tan Haoyue, Guo Jing, Yu Nanyang, Shi Wei, Yu Hongxia. Review on the Effects of Endocrine Disrupting Chemicals on Dimerization of Nuclear Receptors[J]. Asian Journal of Ecotoxicology, 2021, 16(4): 17-31. doi: 10.7524/AJE.1673-5897.20201105004

内分泌干扰物对核受体二聚化影响的研究进展

    作者简介: 黄付晏(1996-),女,硕士研究生,研究方向为计算毒理学,E-mail:hfuyan2332@163.com
    通讯作者: 于南洋, E-mail: yuny@nju.edu.cn
  • 基金项目:

    国家重点研发计划(2018YFC1801604,2018YFC1801503);国家自然科学基金面上项目(21577058);江苏省优秀青年基金资助项目(BK20170077);国家水体污染控制与治理科技重大专项(2017ZX07202-001,2017ZX07602-002)

  • 中图分类号: X171.5

Review on the Effects of Endocrine Disrupting Chemicals on Dimerization of Nuclear Receptors

    Corresponding author: Yu Nanyang, yuny@nju.edu.cn
  • Fund Project:
  • 摘要: 环境内分泌干扰物(endocrine disrupting chemicals,EDCs)可模仿或拮抗天然激素与核受体结合,干扰核受体的同源或异源二聚,进而通过共调节因子的招募调控转录活性,最终引起内分泌干扰效应。目前研究主要针对EDCs与核受体的结合过程,忽视了其对核受体二聚化过程的影响,而该过程的阻断可直接导致转录失活。EDCs对于不同核受体二聚化的影响不同,只有激动剂EDCs能够促进雄激素受体(androgen receptor,AR)的同源二聚化,而雌激素受体(estrogen receptor,ER)在与具有激动或拮抗活性的EDCs结合后都可诱导ER二聚体的形成,但二聚化类型不同。通过检索ToxCast和Tox21数据库发现多达227种EDCs可以诱导ER二聚化,相比于ERα-ERα同源二聚体(6.09%~7.38%的活性率),EDCs更易诱导ERα-ERβ异源二聚体(11.25%~12.22%的活性率)和ERβ-ERβ同源二聚体(10.02%~11.69%的活性率)。EDCs也能够差异性诱导其他核受体如维生素D受体(vitamin D receptor,VDR)与维甲酸X受体(retinoid X receptor,RXR)形成的异源二聚体,不同类型的二聚体对于研究EDCs转录活性的生理学相关性具有重要意义。基于经济合作与发展组织(Organization for Economic Co-operation and Development,OECD)报告的参考化学品研究发现,相比于配受体结合活性,二聚活性与转录活性之间有着更好的相关关系。本文从EDCs介导的核受体二聚化转录机制、二聚化与转录活性间的关系以及二聚化研究方法三方面,总结EDCs对核受体二聚化的影响,以期为深入理解EDCs的分子作用机制,推进化合物的内分泌干扰风险评估提供参考。
  • 加载中
  • Gronemeyer H, Gustafsson J A, Laudet V. Principles for modulation of the nuclear receptor superfamily[J]. Nature Reviews Drug Discovery, 2004, 3(11):950-964
    Gore A C, Chappell V A, Fenton S E, et al. EDC-2:The endocrine society's second scientific statement on endocrine-disrupting chemicals[J]. Endocrine Reviews, 2015, 36(6):E1-E150
    Gore A C, Chappell V A, Fenton S E, et al. Executive summary to EDC-2:The endocrine society's second scientific statement on endocrine-disrupting chemicals[J]. Endocrine Reviews, 2015, 36(6):593-602
    Chen L G, Zhang W P, Hua J H, et al. Dysregulation of intestinal health by environmental pollutants:Involvement of the estrogen receptor and aryl hydrocarbon receptor[J]. Environmental Science & Technology, 2018, 52(4):2323-2330
    Soto A M, Sonnenschein C. Environmental causes of cancer:Endocrine disruptors as carcinogens[J]. Nature Reviews Endocrinology, 2010, 6(7):363-370
    Melzer D, Osborne N J, Henley W E, et al. Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women[J]. Circulation, 2012, 125(12):1482-1490
    Legler J, Fletcher T, Govarts E, et al. Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European Union[J]. The Journal of Clinical Endocrinology and Metabolism, 2015, 100(4):1278-1288
    Mustieles V, Pérez-Lobato R, Olea N, et al. Bisphenol A:Human exposure and neurobehavior[J]. Neurotoxicology, 2015, 49:174-184
    Trasande L, Zoeller R T, Hass U, et al. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union:An updated analysis[J]. Andrology, 2016, 4(4):565-572
    Attina T M, Hauser R, Sathyanarayana S, et al. Exposure to endocrine-disrupting chemicals in the USA:A population-based disease burden and cost analysis[J]. The Lancet Diabetes & Endocrinology, 2016, 4(12):996-1003
    Chen Q C, Tan H Y, Yu H X, et al. Activation of steroid hormone receptors:Shed light on the in silico evaluation of endocrine disrupting chemicals[J]. Science of the Total Environment, 2018, 631-632:27-39
    Leduc A M, Trent J O, Wittliff J L, et al. Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20):11273-11278
    Chakraborty S, Cole S, Rader N, et al. In silico design of peptidic inhibitors targeting estrogen receptor alpha dimer interface[J]. Molecular Diversity, 2012, 16(3):441-451
    Helsen C, Kerkhofs S, Clinckemalie L, et al. Structural basis for nuclear hormone receptor DNA binding[J]. Molecular and Cellular Endocrinology, 2012, 348(2):411-417
    Louw A. GR dimerization and the impact of GR dimerization on GR protein stability and half-life[J]. Frontiers in Immunology, 2019, 10:1693
    Iwabuchi E, Miki Y, Ono K, et al. In situ detection of estrogen receptor dimers in breast carcinoma cells in archival materials using proximity ligation assay (PLA)[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2017, 165(Pt B):159-169
    Chandra V, Wu D L, Li S, et al. The quaternary architecture of RARβ-RXRα heterodimer facilitates domain-domain signal transmission[J]. Nature Communications, 2017, 8(1):868
    Zheng W L, Lu Y, Tian S Y, et al. Structural insights into the heterodimeric complex of the nuclear receptors FXR and RXR[J]. Journal of Biological Chemistry, 2018, 293(32):12535-12541
    Wang Y M, Ong S S, Chai S C, et al. Role of CAR and PXR in xenobiotic sensing and metabolism[J]. Expert Opinion on Drug Metabolism & Toxicology, 2012, 8(7):803-817
    Ahmadian M, Suh J M, Hah N, et al. PPARγ signaling and metabolism:The good, the bad and the future[J]. Nature Medicine, 2013, 19(5):557-566
    Evans R M, Mangelsdorf D J. Nuclear receptors, RXR, and the big Bang[J]. Cell, 2014, 157(1):255-266
    Manolagas S C, O'Brien C A, Almeida M. The role of estrogen and androgen receptors in bone health and disease[J]. Nature Reviews Endocrinology, 2013, 9(12):699-712
    Zhou W, Slingerland J M. Links between oestrogen receptor activation and proteolysis:Relevance to hormone-regulated cancer therapy[J]. Nature Reviews Cancer, 2014, 14(1):26-38
    Otte K, Kranz H, Kober I, et al. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol[J]. Molecular and Cellular Biology, 2003, 23(3):864-872
    Huang W, Peng Y, Kiselar J, et al. Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains[J]. Nature Communications, 2018, 9(1):3520
    Schwabe J W, Chapman L, Finch J T, et al. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA:How receptors discriminate between their response elements[J]. Cell, 1993, 75(3):567-578
    Tamrazi A, Carlson K E, Daniels J R, et al. Estrogen receptor dimerization:Ligand binding regulates dimer affinity and dimer dissociation rate[J]. Molecular Endocrinology, 2002, 16(12):2706-2719
    De Bosscher K, Desmet S J, Clarisse D, et al. Nuclear receptor crosstalk-defining the mechanisms for therapeutic innovation[J]. Nature Reviews Endocrinology, 2020, 16(7):363-377
    Forman B M, Umesono K, Chen J, et al. Unique response pathways are established by allosteric interactions among nuclear hormone receptors[J]. Cell, 1995, 81(4):541-550
    Kurokawa R, Yu V C, Näär A, et al. Differential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers[J]. Genes & Development, 1993, 7(7B):1423-1435
    Leblanc B P, Stunnenberg H G. 9-cis retinoic acid signaling:Changing partners causes some excitement[J]. Genes & Development, 1995, 9(15):1811-1816
    Gampe R T, Montana V G, Lambert M H, et al. Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors[J]. Molecular Cell, 2000, 5(3):545-555
    Eiler S, Gangloff M, Duclaud S, et al. Overexpression, purification, and crystal structure of native ER alpha LBD[J]. Protein Expression and Purification, 2001, 22(2):165-173
    Takacs M, Petoukhov M V, Atkinson R A, et al. The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism[J]. PLoS One, 2013, 8(7):e67810
    Nadal M, Prekovic S, Gallastegui N, et al. Structure of the homodimeric androgen receptor ligand-binding domain[J]. Nature Communications, 2017, 8:14388
    Williams S P, Sigler P B. Atomic structure of progesterone complexed with its receptor[J]. Nature, 1998, 393(6683):392-396
    Bledsoe R K, Madauss K P, Holt J A, et al. A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor[J]. The Journal of Biological Chemistry, 2005, 280(35):31283-31293
    Claessens F, Joniau S, Helsen C. Comparing the rules of engagement of androgen and glucocorticoid receptors[J]. Cellular and Molecular Life Sciences, 2017, 74(12):2217-2228
    Savory J G, Préfontaine G G, Lamprecht C, et al. Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces[J]. Molecular and Cellular Biology, 2001, 21(3):781-793
    Deckers J, Bougarne N, Mylka V, et al. Co-activation of glucocorticoid receptor and peroxisome proliferator-activated receptor-γ in murine skin prevents worsening of atopic March[J]. The Journal of Investigative Dermatology, 2018, 138(6):1360-1370
    Panet-Raymond V, Gottlieb B, Beitel L K, et al. Interactions between androgen and estrogen receptors and the effects on their transactivational properties[J]. Molecular and Cellular Endocrinology, 2000, 167(1-2):139-150
    Miranda T B, Voss T C, Sung M H, et al. Reprogramming the chromatin landscape:Interplay of the estrogen and glucocorticoid receptors at the genomic level[J]. Cancer Research, 2013, 73(16):5130-5139
    Fan W W, Evans R. PPARs and ERRs:Molecular mediators of mitochondrial metabolism[J]. Current Opinion in Cell Biology, 2015, 33:49-54
    Pratt W B, Galigniana M D, Morishima Y, et al. Role of molecular chaperones in steroid receptor action[J]. Essays in Biochemistry, 2004, 40:41-58
    Dull A, Goncharova E, Hager G, et al. Development of an image analysis screen for estrogen receptor alpha (ERα) ligands through measurement of nuclear translocation dynamics[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2010, 122(5):341-351
    Kil S H, Kalinec F. Expression and dexamethasone-induced nuclear translocation of glucocorticoid and mineralocorticoid receptors in Guinea pig cochlear cells[J]. Hearing Research, 2013, 299:63-78
    Nott S L, Huang Y F, Li X D, et al. Genomic responses from the estrogen-responsive element-dependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations[J]. The Journal of Biological Chemistry, 2009, 284(22):15277-15288
    Tata J R. Signalling through nuclear receptors[J]. Nature Reviews Molecular Cell Biology, 2002, 3(9):702-710
    Mangelsdorf D J, Thummel C, Beato M, et al. The nuclear receptor superfamily:The second decade[J]. Cell, 1995, 83(6):835-839
    Gronemeyer H, Moras D. Nuclear receptors. How to finger DNA[J]. Nature, 1995, 375(6528):190-191
    Chen Q C, Wang X X, Tan H Y, et al. Molecular initiating events of bisphenols on androgen receptor-mediated pathways provide guidelines for in silico screening and design of substitute compounds[J]. Environmental Science & Technology Letters, 2019, 6(4):205-210
    Chen Q C, Wang X X, Shi W, et al. Identification of thyroid hormone disruptors among HO-PBDEs:In vitro investigations and coregulator involved simulations[J]. Environmental Science & Technology, 2016, 50(22):12429-12438
    Bhhatarai B, Wilson D M, Price P S, et al. Evaluation of OASIS QSAR models using ToxCastTM in vitro estrogen and androgen receptor binding data and application in an integrated endocrine screening approach[J]. Environmental Health Perspectives, 2016, 124(9):1453-1461
    Paul-Friedman K, Martin M, Crofton K M, et al. Limited chemical structural diversity found to modulate thyroid hormone receptor in the Tox21 chemical library[J]. Environmental Health Perspectives, 2019, 127(9):97009
    Coriano C G, Liu F B, Sievers C K, et al. A computational-based approach to identify estrogen receptor α/β heterodimer selective ligands[J]. Molecular Pharmacology, 2018, 93(3):197-207
    Powell E, Xu W. Intermolecular interactions identify ligand-selective activity of estrogen receptor alpha/beta dimers[J]. PNAS, 2008, 105(48):19012-19017
    Depoix C, Delmotte M H, Formstecher P, et al. Control of retinoic acid receptor heterodimerization by ligand-induced structural transitions. A novel mechanism of action for retinoid antagonists[J]. The Journal of Biological Chemistry, 2001, 276(12):9452-9459
    Putcha B D, Wright E, Brunzelle J S, et al. Structural basis for negative cooperativity within agonist-bound TR:RXR heterodimers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):6084-6087
    Collingwood T N, Butler A, Tone Y, et al. Thyroid hormone-mediated enhancement of heterodimer formation between thyroid hormone receptor beta and retinoid X receptor[J]. The Journal of Biological Chemistry, 1997, 272(20):13060-13065
    Delfosse V, Grimaldi M, Pons J L, et al. Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes[J]. PNAS, 2012, 109(37):14930-14935
    Osz J, Brélivet Y, Peluso-Iltis C, et al. Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10):E588-E594
    Judson R S, Houck K A, Watt E D, et al. On selecting a minimal set of in vitro assays to reliably determine estrogen agonist activity[J]. Regulatory Toxicology and Pharmacology:RTP, 2017, 91:39-49
    Gounarides J S, Chen A D, Shapiro M J. Nuclear magnetic resonance chromatography:Applications of pulse field gradient diffusion NMR to mixture analysis and ligand-receptor interactions[J]. Journal of Chromatography B:Biomedical Sciences and Applications, 1999, 725(1):79-90
    Benedetti R, Conte M, Carafa V, et al. Analysis of chromatin-nuclear receptor interactions by laser-chromatin immunoprecipitation[J]. Methods in Molecular Biology, 2014, 1204:25-34
    Li S M, Armstrong C M, Bertin N, et al. A map of the interactome network of the metazoan C. elegans[J]. Science, 2004, 303(5657):540-543
    Cui Y N, Zhang X, Yu M, et al. Techniques for detecting protein-protein interactions in living cells:Principles, limitations, and recent progress[J]. Science China Life Sciences, 2019, 62(5):619-632
    Medintz I L, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology[J]. Physical Chemistry Chemical Physics:PCCP, 2009, 11(1):17-45
    Feige J N, Gelman L, Tudor C, et al. Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand[J]. The Journal of Biological Chemistry, 2005, 280(18):17880-17890
    Schaufele F, Carbonell X, Guerbadot M, et al. The structural basis of androgen receptor activation:Intramolecular and intermolecular amino-carboxy interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(28):9802-9807
    Yoshimura K, Muto Y, Shimizu M, et al. Phosphorylated retinoid X receptor alpha loses its heterodimeric activity with retinoic acid receptor beta[J]. Cancer Science, 2007, 98(12):1868-1874
    Shrestha D, Jenei A, Nagy P, et al. Understanding FRET as a research tool for cellular studies[J]. International Journal of Molecular Sciences, 2015, 16(4):6718-6756
    Hayes S, Malacrida B, Kiely M, et al. Studying protein-protein interactions:Progress, pitfalls and solutions[J]. Biochemical Society Transactions, 2016, 44(4):994-1004
    Pfleger K D, Eidne K A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET)[J]. Nature Methods, 2006, 3(3):165-174
    Mulero M, Perroy J, Federici C, et al. Analysis of RXR/THR and RXR/PPARG2 heterodimerization by bioluminescence resonance energy transfer (BRET)[J]. PLoS One, 2013, 8(12):e84569
    Grossmann C, Ruhs S, Langenbruch L, et al. Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling[J]. Chemistry & Biology, 2012, 19(6):742-751
    Giner X C, Cotnoir-White D, Mader S, et al. Selective ligand activity at Nur/retinoid X receptor complexes revealed by dimer-specific bioluminescence resonance energy transfer-based sensors[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2015, 29(10):4256-4267
    Cotnoir-White D, El Ezzy M, Boulay P L, et al. Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11):E2653-E2662
    Dragulescu-Andrasi A, Chan C T, De A, et al. Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29):12060-12065
    European Society of Endocrinology. Measurement of estrogen receptor alpha homodimerization caused by xenoestrogens using bimolecular fluorescence complementation[R]. Florence, Italy:European Society of Endocrinology, 2012
    Xu D, Zhan Y, Qi Y F, et al. Androgen receptor splice variants dimerize to transactivate target genes[J]. Cancer Research, 2015, 75(17):3663-3671
    Bedi S. Identification of novel ligands and structural requirements for heterodimerization of the liver X receptor alpha[D]. Dayton:Wright State University, 2017:206
    Chinchilla D, Zipfel C, Robatzek S, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature, 2007, 448(7152):497-500
    Kodama Y, Hu C D. Bimolecular fluorescence complementation (BiFC):A 5-year update and future perspectives[J]. BioTechniques, 2012, 53(5):285-298
    Karplus M, McCammon J A. Molecular dynamics simulations of biomolecules[J]. Nature Structural Biology, 2002, 9(9):646-652
    Li Y, Perera L, Coons L A, et al. Differential in vitro biological action, coregulator interactions, and molecular dynamic analysis of bisphenol A (BPA), BPAF, and BPS ligand-ERα complexes[J]. Environmental Health Perspectives, 2018, 126(1):017012
    Zhuang S L, Bao L L, Linhananta A, et al. Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization[J]. Journal of Molecular Graphics and Modelling, 2013, 44:155-160
    Sonoda M T, Martínez L, Webb P, et al. Ligand dissociation from estrogen receptor is mediated by receptor dimerization:Evidence from molecular dynamics simulations[J]. Molecular Endocrinology, 2008, 22(7):1565-1578
    Chakraborty S, Willett H, Biswas P K. Insight into estrogen receptor beta-beta and alpha-beta homo- and heterodimerization:A combined molecular dynamics and sequence analysis study[J]. Biophysical Chemistry, 2012, 170:42-50
    Fratev F. Activation helix orientation of the estrogen receptor is mediated by receptor dimerization:Evidence from molecular dynamics simulations[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(20):13403-13420
  • 加载中
计量
  • 文章访问数:  953
  • HTML全文浏览数:  953
  • PDF下载数:  41
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-05

内分泌干扰物对核受体二聚化影响的研究进展

    通讯作者: 于南洋, E-mail: yuny@nju.edu.cn
    作者简介: 黄付晏(1996-),女,硕士研究生,研究方向为计算毒理学,E-mail:hfuyan2332@163.com
  • 污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京 210023
基金项目:

国家重点研发计划(2018YFC1801604,2018YFC1801503);国家自然科学基金面上项目(21577058);江苏省优秀青年基金资助项目(BK20170077);国家水体污染控制与治理科技重大专项(2017ZX07202-001,2017ZX07602-002)

摘要: 环境内分泌干扰物(endocrine disrupting chemicals,EDCs)可模仿或拮抗天然激素与核受体结合,干扰核受体的同源或异源二聚,进而通过共调节因子的招募调控转录活性,最终引起内分泌干扰效应。目前研究主要针对EDCs与核受体的结合过程,忽视了其对核受体二聚化过程的影响,而该过程的阻断可直接导致转录失活。EDCs对于不同核受体二聚化的影响不同,只有激动剂EDCs能够促进雄激素受体(androgen receptor,AR)的同源二聚化,而雌激素受体(estrogen receptor,ER)在与具有激动或拮抗活性的EDCs结合后都可诱导ER二聚体的形成,但二聚化类型不同。通过检索ToxCast和Tox21数据库发现多达227种EDCs可以诱导ER二聚化,相比于ERα-ERα同源二聚体(6.09%~7.38%的活性率),EDCs更易诱导ERα-ERβ异源二聚体(11.25%~12.22%的活性率)和ERβ-ERβ同源二聚体(10.02%~11.69%的活性率)。EDCs也能够差异性诱导其他核受体如维生素D受体(vitamin D receptor,VDR)与维甲酸X受体(retinoid X receptor,RXR)形成的异源二聚体,不同类型的二聚体对于研究EDCs转录活性的生理学相关性具有重要意义。基于经济合作与发展组织(Organization for Economic Co-operation and Development,OECD)报告的参考化学品研究发现,相比于配受体结合活性,二聚活性与转录活性之间有着更好的相关关系。本文从EDCs介导的核受体二聚化转录机制、二聚化与转录活性间的关系以及二聚化研究方法三方面,总结EDCs对核受体二聚化的影响,以期为深入理解EDCs的分子作用机制,推进化合物的内分泌干扰风险评估提供参考。

English Abstract

参考文献 (89)

目录

/

返回文章
返回