定量有害结局路径(qAOP)评估环境化学物质毒性的研究进展Ⅱ:类二噁英物质及AhR-qAOP

田明明, 彭颖, 张睿, 张瀚心, 张效伟. 定量有害结局路径(qAOP)评估环境化学物质毒性的研究进展Ⅱ:类二噁英物质及AhR-qAOP[J]. 生态毒理学报, 2021, 16(4): 1-16. doi: 10.7524/AJE.1673-5897.20201024002
引用本文: 田明明, 彭颖, 张睿, 张瀚心, 张效伟. 定量有害结局路径(qAOP)评估环境化学物质毒性的研究进展Ⅱ:类二噁英物质及AhR-qAOP[J]. 生态毒理学报, 2021, 16(4): 1-16. doi: 10.7524/AJE.1673-5897.20201024002
Tian Mingming, Peng Ying, Zhang Rui, Zhang Hanxin, Zhang Xiaowei. Research Advance of Quantitative Adverse Outcome Pathway (qAOP) in Environmental Chemicals Toxicity Assessment Ⅱ: Dioxin-like Compounds and AhR-qAOP[J]. Asian Journal of Ecotoxicology, 2021, 16(4): 1-16. doi: 10.7524/AJE.1673-5897.20201024002
Citation: Tian Mingming, Peng Ying, Zhang Rui, Zhang Hanxin, Zhang Xiaowei. Research Advance of Quantitative Adverse Outcome Pathway (qAOP) in Environmental Chemicals Toxicity Assessment Ⅱ: Dioxin-like Compounds and AhR-qAOP[J]. Asian Journal of Ecotoxicology, 2021, 16(4): 1-16. doi: 10.7524/AJE.1673-5897.20201024002

定量有害结局路径(qAOP)评估环境化学物质毒性的研究进展Ⅱ:类二噁英物质及AhR-qAOP

    作者简介: 田明明(1994-),男,博士研究生,研究方向为环境功能基因组学,E-mail:tianzhuangm@126.com
    通讯作者: 彭颖, E-mail: pengying2009@live.cn 张效伟, E-mail: zhangxw@nju.edu.cn
  • 基金项目:

    国家重点研发计划课题(2018YFC1801606,2018YFC1801605);国家自然科学基金资助项目(21707069,21806052)

  • 中图分类号: X171.5

Research Advance of Quantitative Adverse Outcome Pathway (qAOP) in Environmental Chemicals Toxicity Assessment Ⅱ: Dioxin-like Compounds and AhR-qAOP

    Corresponding authors: Peng Ying, pengying2009@live.cn ;  Zhang Xiaowei, zhangxw@nju.edu.cn
  • Fund Project:
  • 摘要: 环境中不断检出具有二噁英结构并存在潜在生物毒性的新型污染物类二噁英物质(dioxin-like compounds,DLCs),识别并评估其生态与人体毒性对化学品风险防控具有重要意义。传统的化学品毒性测试方法已不能满足评估大批环境化学物质风险的需求,基于芳香烃受体(aryl hydrocarbon receptor,AhR)的有害结局路径(adverse outcome pathway,AOP)为准确评估潜在DLCs的生态与健康风险提供了新的策略。为指导预测新型DLCs的毒性,需在定性AhR-AOP基础上发展定量AOP。本文综述了AhR-AOP的研究现状,并总结了“AhR激活-胚胎毒性”定量AOP的最新进展,包括定量模型的开发、相关体外测试技术、对新型DLCs和不同物种的危害评估的适用性等。最后探讨了AhR-qAOP发展过程中的问题与潜在解决方案,对其应用于DLCs生态危害与风险评价的前景进行了展望。
  • 加载中
  • Moura-Alves P, Faé K, Houthuys E, et al. AhR sensing of bacterial pigments regulates antibacterial defence[J]. Nature, 2014, 512(7515):387-392
    魏凤华, 张俊江, 夏普, 等. 类二噁英物质及芳香烃受体(AhR)介导的有害结局路径(AOP)研究进展[J]. 生态毒理学报, 2016, 11(1):37-51

    Wei F H, Zhang J J, Xia P, et al. Research progress on dioxin-like compounds and AhR-mediated adverse outcome pathway (AOP)[J]. Asian Journal of Ecotoxicology, 2016, 11(1):37-51(in Chinese)

    Kennedy G D, Nukaya M, Moran S M, et al. Liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin is dependent on the aryl hydrocarbon receptor and TNF/IL-1 receptors[J]. Toxicological Sciences, 2014, 140(1):135-143
    Perkins E J, Ashauer R, Burgoon L, et al. Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment[J]. Environmental Toxicology and Chemistry, 2019, 38(9):1850-1865
    Pavek P, Dvorak Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues[J]. Current Drug Metabolism, 2008, 9(2):129-143
    Fujii-Kuriyama Y, Kawajiri K. Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli[J]. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 2010, 86(1):40-53
    Hahn M E. Aryl hydrocarbon receptors:Diversity and evolution[J]. Chemico-Biological Interactions, 2002, 141(1-2):131-160
    Karchner S I, Franks D G, Powell W H, et al. Regulatory interactions among three members of the vertebrate aryl hydrocarbon receptor family:AHR repressor, AHR1, and AHR2[J]. The Journal of Biological Chemistry, 2002, 277(9):6949-6959
    Koh D H, Hwang J H, Park J G, et al. The AHR1-ARNT1 dimerization pair is a major regulator of the response to natural ligands, but not to TCDD, in the chicken[J]. Ecotoxicology and Environmental Safety, 2020, 201:110835
    Doering J A, Giesy J P, Wiseman S, et al. Predicting the sensitivity of fishes to dioxin-like compounds:Possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain[J]. Environmental Science and Pollution Research International, 2013, 20(3):1219-1224
    Hahn M E. Dioxin toxicology and the aryl hydrocarbon receptor:Insights from fish and other non-traditional models[J]. Marine Biotechnology, 2001, 3(Suppl.1):S224-S238
    Zhang S K, Peng P G, Huang W L, et al. PCDD/PCDF pollution in soils and sediments from the Pearl River Delta of China[J]. Chemosphere, 2009, 75(9):1186-1195
    Zhang T, Chen S, Li N, et al. Occurrence, sources and ecological risks of PCDD/Fs and DL-PCBs in surface sediments from rivers in city cluster in south Jiangsu Province, China[J]. Environmental Chemistry, 2014, 33(9):1445-1455
    Klinčić D, Dvoršćak M, Jagić K, et al. Levels and distribution of polybrominated diphenyl ethers in humans and environmental compartments:A comprehensive review of the last five years of research[J]. Environmental Science and Pollution Research International, 2020, 27(6):5744-5758
    Kanaya N, Bernal L, Chang G, et al. Molecular mechanisms of polybrominated diphenyl ethers (BDE-47, BDE-100, and BDE-153) in human breast cancer cells and patient-derived xenografts[J]. Toxicological Sciences, 2019, 169(2):380-398
    Zhang L, Jin Y R, Han Z H, et al. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish[J]. Environmental Toxicology and Chemistry, 2018, 37(3):780-787
    Zhang R, Zhang X W, Zhang J J, et al. Activation of avian aryl hydrocarbon receptor and inter-species sensitivity variations by polychlorinated diphenylsulfides[J]. Environmental Science & Technology, 2014, 48(18):10948-10956
    Zhang J J, Zhang X W, Xia P, et al. Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides[J]. Chemosphere, 2016, 144:1754-1762
    Ankley G T, Bennett R S, Erickson R J, et al. Adverse outcome pathways:A conceptual framework to support ecotoxicology research and risk assessment[J]. Environmental Toxicology and Chemistry, 2010, 29(3):730-741
    Hecker M, LaLone C A. Adverse outcome pathways:Moving from a scientific concept to an internationally accepted framework[J]. Environmental Toxicology and Chemistry, 2019, 38(6):1152-1163
    Poland A, Knutson J C. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons:Examination of the mechanism of toxicity[J]. Annual Review of Pharmacology and Toxicology, 1982, 22:517-554
    Conolly R B, Ankley G T, Cheng W Y, et al. Quantitative adverse outcome pathways and their application to predictive toxicology[J]. Environmental Science & Technology, 2017, 51(8):4661-4672
    Pittman M E, Edwards S W, Ives C, et al. AOP-DB:A database resource for the exploration of adverse outcome pathways through integrated association networks[J]. Toxicology and Applied Pharmacology, 2018, 343:71-83
    Teraoka H, Okuno Y, Nijoukubo D, et al. Involvement of COX2-thromboxane pathway in TCDD-induced precardiac edema in developing zebrafish[J]. Aquatic Toxicology, 2014, 154:19-26
    Lanham K A, Plavicki J, Peterson R E, et al. Cardiac myocyte-specific AHR activation phenocopies TCDD-induced toxicity in zebrafish[J]. Toxicological Sciences, 2014, 141(1):141-154
    Smith A G, Clothier B, Carthew P, et al. Protection of the Cyp1a2(-/-) null mouse against uroporphyria and hepatic injury following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Toxicology and Applied Pharmacology, 2001, 173(2):89-98
    Doering J A, Wiseman S, Giesy J P, et al. A cross-species quantitative adverse outcome pathway for activation of the aryl hydrocarbon receptor leading to early life stage mortality in birds and fishes[J]. Environmental Science & Technology, 2018, 52(13):7524-7533
    Kim Y, Cooper K R. Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) in the embryos and newly hatched larvae of the Japanese medaka (Oryzias latipes)[J]. Chemosphere, 1999, 39(3):527-538
    Handel C M, van Hemert C. Environmental contaminants and chromosomal damage associated with beak deformities in a resident North American passerine[J]. Environmental Toxicology and Chemistry, 2015, 34(2):314-327
    Mylchreest E, Charbonneau M. Studies on the mechanism of uroporphyrinogen decarboxylase inhibition in hexachlorobenzene-induced Porphyria in the female rat[J]. Toxicology and Applied Pharmacology, 1997, 145(1):23-33
    James C A, Marks G S. Inhibition of chick embryo hepatic uroporphyrinogen decarboxylase by components of xenobiotic-treated chick embryo hepatocytes in culture[J]. Canadian Journal of Physiology and Pharmacology, 1989, 67(3):246-249
    Doering J A, Wiseman S, Beitel S C, et al. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds[J]. Aquatic Toxicology, 2014, 150:27-35
    Zhang R, Manning G E, Farmahin R, et al. Relative potencies of aroclor mixtures derived from avian in vitro bioassays:Comparisons with calculated toxic equivalents[J]. Environmental Science & Technology, 2013, 47(15):8852-8861
    Mandavia C. TCDD-induced activation of aryl hydrocarbon receptor regulates the skin stem cell population[J]. Medical Hypotheses, 2015, 84(3):204-208
    魏凤华, 张效伟, 张睿, 等. 鸟类AhR报告基因法对垃圾焚烧炉飞灰中的类二噁英污染物的评估[J]. 中国科技论文, 2016, 11(15):1791-1796

    Wei F H, Zhang X W, Zhang R, et al. Assessment of the dioxin-like compounds in fly ash of the waste incinerator by avian AhR luciferase report gene assay[J]. China Sciencepaper, 2016, 11(15):1791-1796(in Chinese)

    夏洁. 二恶英类污染物的高通量生物检测技术研究及其在环境监测中的应用[D]. 南京:南京大学, 2013:21-31 Xia J. Development of a high throughput bio-analytical method of dioxin-like compounds and its application in environmental monitoring[D]. Nanjing:Nanjing University, 2013:21

    -31(in Chinese)

    Mundy L J, Williams K L, Chiu S, et al. Extracts of passive samplers deployed in variably contaminated wetlands in the athabasca oil sands region elicit biochemical and transcriptomic effects in avian hepatocytes[J]. Environmental Science & Technology, 2019, 53(15):9192-9202
    Doering J A, Dubiel J, Wiseman S. Predicting early life stage mortality in birds and fishes from exposure to low-potency agonists of the aryl hydrocarbon receptor:A cross-species quantitative adverse outcome pathway approach[J]. Environmental Toxicology and Chemistry, 2020, 39(10):2055-2064
    Manning G E, Farmahin R, Crump D, et al. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD50 of polychlorinated biphenyls in avian species[J]. Toxicology and Applied Pharmacology, 2012, 263(3):390-401
    Manning G E, Mundy L J, Crump D, et al. Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls:Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity[J]. Toxicology and Applied Pharmacology, 2013, 266(1):38-47
    Peng Y, Xia P, Zhang J J, et al. Toxicogenomic assessment of 6-OH-BDE47-induced developmental toxicity in chicken embryos[J]. Environmental Science & Technology, 2016, 50(22):12493-12503
    Farmahin R, Wu D M, Crump D, et al. Sequence and in vitro function of chicken, ring-necked pheasant, and Japanese quail AHR1 predict in vivo sensitivity to dioxins[J]. Environmental Science & Technology, 2012, 46(5):2967-2975
    Farmahin R, Manning G E, Crump D, et al. Amino acid sequence of the ligand-binding domain of the aryl hydrocarbon receptor 1 predicts sensitivity of wild birds to effects of dioxin-like compounds[J]. Toxicological Sciences, 2013, 131(1):139-152
    Karchner S I, Franks D G, Kennedy S W, et al. The molecular basis for differential dioxin sensitivity in birds:Role of the aryl hydrocarbon receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(16):6252-6257
    Cohen-Barnhouse A M, Zwiernik M J, Link J E, et al. Sensitivity of Japanese quail (Coturnix japonica), Common pheasant (Phasianus colchicus), and White leghorn chicken (Gallus gallus domesticus) embryos to in ovo exposure to TCDD, PeCDF, and TCDF[J]. Toxicological Sciences, 2011, 119(1):93-103
    Head J A, Hahn M E, Kennedy S W. Key amino acids in the aryl hydrocarbon receptor predict dioxin sensitivity in avian species[J]. Environmental Science & Technology, 2008, 42(19):7535-7541
    Goryo K, Suzuki A, Carpio C A D, et al. Identification of amino acid residues in the Ah receptor involved in ligand binding[J]. Biochemical and Biophysical Research Communications, 2007, 354(2):396-402
    Ema M, Ohe N, Suzuki M, et al. Dioxin binding activities of polymorphic forms of mouse and human arylhydrocarbon receptors[J]. The Journal of Biological Chemistry, 1994, 269(44):27337-27343
    Pandini A, Denison M S, Song Y J, et al. Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis[J]. Biochemistry, 2007, 46(3):696-708
    Abnet C C, Tanguay R L, Hahn M E, et al. Two forms of aryl hydrocarbon receptor type 2 in rainbow trout (Oncorhynchus mykiss):Evidence for differential expression and enhancer specificity[J]. Journal of Biological Chemistry, 1999, 274(21):15159-15166
    Zhang R, Wang X X, Zhang X S, et al. Polychlorinated diphenylsulfides activate aryl hydrocarbon receptor 2 in zebrafish embryos:Potential mechanism of developmental toxicity[J]. Environmental Science & Technology, 2018, 52(7):4402-4412
    White D H, Hoffman D J. Effects of polychlorinated dibenzo-p-dioxins and dibenzofurans on nesting wood ducks (Aix sponsa) at Bayou Meto, Arkansas[J]. Environmental Health Perspectives, 1995, 103(Suppl.4):37-39
    Fujisawa N, Nakayama S M M, Ikenaka Y, et al. TCDD-induced chick cardiotoxicity is abolished by a selective cyclooxygenase-2(COX-2) inhibitor NS398[J]. Archives of Toxicology, 2014, 88(9):1739-1748
    Dong W, Matsumura F, Kullman S W. TCDD induced pericardial edema and relative COX-2 expression in medaka (Oryzias latipes) embryos[J]. Toxicological Sciences, 2010, 118(1):213-223
    Doering J A, Farmahin R, Wiseman S, et al. Differences in activation of aryl hydrocarbon receptors of white sturgeon relative to lake sturgeon are predicted by identities of key amino acids in the ligand binding domain[J]. Environmental Science & Technology, 2015, 49(7):4681-4689
    Tillitt D E, Buckler J A, Nicks D K, et al. Sensitivity of lake sturgeon (Acipenser fulvescens) early life stages to 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3,3',4,4',5-pentachlorobiphenyl[J]. Environmental Toxicology and Chemistry, 2017, 36(4):988-998
    Gunnarsson L, Jauhiainen A, Kristiansson E, et al. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments[J]. Environmental Science & Technology, 2008, 42(15):5807-5813
    LaLone C A, Villeneuve D L, Lyons D, et al. Editor's highlight:Sequence alignment to predict across species susceptibility (SeqAPASS):A web-based tool for addressing the challenges of cross-species extrapolation of chemical toxicity[J]. Toxicological Sciences, 2016, 153(2):228-245
    Zhang R, Zhang J J, Zhang X W, et al. In vitro dioxin-like potencies of HO-and MeO-PBDEs and inter-species sensitivity variation in birds[J]. Ecotoxicology and Environmental Safety, 2016, 126:202-210
    Walker M K, Cook P M, Butterworth B C, et al. Potency of a complex mixture of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin in causing fish early life stage mortality[J]. Fundamental and Applied Toxicology:Official Journal of the Society of Toxicology, 1996, 30(2):178-186
    Wei F H, Li J Y, Zhang R, et al. Relative sensitivities among avian species to individual and mixtures of aryl hydrocarbon receptor-active compounds[J]. Environmental Toxicology and Chemistry, 2016, 35(5):1239-1246
    Patlewicz G, Simon T W, Rowlands J C, et al. Proposing a scientific confidence framework to help support the application of adverse outcome pathways for regulatory purposes[J]. Regulatory Toxicology and Pharmacology, 2015, 71(3):463-477
  • 加载中
计量
  • 文章访问数:  807
  • HTML全文浏览数:  807
  • PDF下载数:  78
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-10-24

定量有害结局路径(qAOP)评估环境化学物质毒性的研究进展Ⅱ:类二噁英物质及AhR-qAOP

    通讯作者: 彭颖, E-mail: pengying2009@live.cn ;  张效伟, E-mail: zhangxw@nju.edu.cn
    作者简介: 田明明(1994-),男,博士研究生,研究方向为环境功能基因组学,E-mail:tianzhuangm@126.com
  • 1. 污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京 210023;
  • 2. 流域环境生态工程研发中心, 北京师范大学自然科学高等研究院, 珠海 519087;
  • 3. 济南大学水利与环境学院, 济南 250022;
  • 4. 生态环境部固体废物与化学品管理技术中心化学品部, 北京 100029
基金项目:

国家重点研发计划课题(2018YFC1801606,2018YFC1801605);国家自然科学基金资助项目(21707069,21806052)

摘要: 环境中不断检出具有二噁英结构并存在潜在生物毒性的新型污染物类二噁英物质(dioxin-like compounds,DLCs),识别并评估其生态与人体毒性对化学品风险防控具有重要意义。传统的化学品毒性测试方法已不能满足评估大批环境化学物质风险的需求,基于芳香烃受体(aryl hydrocarbon receptor,AhR)的有害结局路径(adverse outcome pathway,AOP)为准确评估潜在DLCs的生态与健康风险提供了新的策略。为指导预测新型DLCs的毒性,需在定性AhR-AOP基础上发展定量AOP。本文综述了AhR-AOP的研究现状,并总结了“AhR激活-胚胎毒性”定量AOP的最新进展,包括定量模型的开发、相关体外测试技术、对新型DLCs和不同物种的危害评估的适用性等。最后探讨了AhR-qAOP发展过程中的问题与潜在解决方案,对其应用于DLCs生态危害与风险评价的前景进行了展望。

English Abstract

参考文献 (62)

目录

/

返回文章
返回