基于高分辨质谱研究双酚A对小鼠血浆代谢谱的影响

姬海南, 李海山, 宋乃宁, 徐宝梁, 赵潺, 李文涛, 沈国林. 基于高分辨质谱研究双酚A对小鼠血浆代谢谱的影响[J]. 生态毒理学报, 2020, 15(3): 71-80. doi: 10.7524/AJE.1673-5897.20190506002
引用本文: 姬海南, 李海山, 宋乃宁, 徐宝梁, 赵潺, 李文涛, 沈国林. 基于高分辨质谱研究双酚A对小鼠血浆代谢谱的影响[J]. 生态毒理学报, 2020, 15(3): 71-80. doi: 10.7524/AJE.1673-5897.20190506002
Ji Hainan, Li Haishan, Song Naining, Xu Baoliang, Zhao Chan, Li Wentao, Shen Guolin. Effect of Bisphenol A on the Plasma Metabolic Spectrum in Mice Based on Quadrupole Orbitrap Mass Spectrometry[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 71-80. doi: 10.7524/AJE.1673-5897.20190506002
Citation: Ji Hainan, Li Haishan, Song Naining, Xu Baoliang, Zhao Chan, Li Wentao, Shen Guolin. Effect of Bisphenol A on the Plasma Metabolic Spectrum in Mice Based on Quadrupole Orbitrap Mass Spectrometry[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 71-80. doi: 10.7524/AJE.1673-5897.20190506002

基于高分辨质谱研究双酚A对小鼠血浆代谢谱的影响

    作者简介: 姬海南(1989-),男,助理研究员,研究方向为化学品安全,E-mail:1446678196@qq.com
  • 基金项目:

    基公益性科研院所基本科研业务费专项资金资助项目(2018JK023,2018JK021,2017JK047);国家重点研发计划资助项目(2017YFF0211201)

  • 中图分类号: X171.5

Effect of Bisphenol A on the Plasma Metabolic Spectrum in Mice Based on Quadrupole Orbitrap Mass Spectrometry

  • Fund Project:
  • 摘要: 观察不同染毒剂量的双酚A(BPA)对C57BL6小鼠血浆代谢谱的影响,探讨其可能的毒性机制,并探寻毒性相关生物靶点。将小鼠随机分为对照组及1、10、50和250 μ g·kg-1组。利用高分辨质谱技术结合主成分分析、偏最小二乘分析等方法对血浆数据进行分析,发现对照组与各剂量组基本分离,并随染毒剂量的增加,各组逐渐偏离对照组,提示小鼠机体具有发生紊乱的趋势;运用Pathway Analysis数据库对差异性代谢物进行拓扑分析;运用Cytoscape和Metscape进行代谢产物的相关性分析和模块化分析。从血浆中筛选出27种差异代谢物,发现BPA的干预作用可能与亚油酸代谢、花生四烯酸代谢、丙氨酸、天冬氨酸和谷氨酸代谢、丙酮酸代谢、鞘脂类代谢和磷酸肌醇代谢等通路有关;对血浆差异性代谢产物的相关性分析和模块化分析结果表明,7个模块之间关系密切,BPA的干预作用可能与血浆7个模块代谢物的差别相关;BPA染毒14 d后,其毒性作用机制可能与丙酮酸、花生四烯酸、亮氨酸和亚油酸等生物靶点的异常相关,丙酮酸、花生四烯酸、亮氨酸和亚油酸等生物靶点可作为BPA引起机体毒性的标志物。
  • 加载中
  • Geens T, Goeyens L, Covaci A. Are potential sources for human exposure to bisphenol-A overlooked?[J]. International Journal of Hygiene and Environmental Health, 2011, 214(5):339-347
    Geens T, Apelbaum T Z, Goeyens L, et al. Intake of bisphenol A from canned beverages and foods on the Belgian market[J]. Food Additives and Contaminants, 2010, 27(11):1627-1637
    Rice C, Birnbaum L S, Cogllano J, et al. Exposure assessment for endocrine disruptors:Some considerations in the design of studies[J]. Environmental Health Perspectives, 2003, 111(13):1683-1690
    Arnold S F, Collins B M, Robinson M K, et al. Differential interaction of natural and synthetic estrogens with extracellular binding proteins in a yeast estrogen screen[J]. Steroids, 1996, 61(11):642-646
    郑丽舒, 金一和, 靳翠红, 等. 双酚A和β-六氯环己烷对小鼠雌激素活性的实验研究[J]. 中国公共卫生, 2002, 18(8):922-924

    Zheng L S, Jin Y H, Jin C H, et al. Experimental study of BPA and β-HCH on estrogenic activity of mice[J]. China Public Health, 2002, 18(8):922-924(in Chinese)

    Kavlock R J, Daston G P, DeRosa C, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors:A report of the U.S. EPA-sponsored workshop[J]. Environmental Health Perspectives, 1996, 104(s4):715-740
    刘秀清. 婴幼儿配方乳粉中壬基酚污染检测与风险控制[J]. 现代农业科技, 2016(21):260-261 Liu X Q.Nonylphenol pollution detection and control in infant formula milk powder[J]. Modern Agricultural Science and Technology, 2016

    (21):260-261(in Chinese)

    Lu Y Y, Chen M L, Sung F C, et al. Daily intake of 4-nonylphenol in Taiwanese[J]. Environment International, 2007, 33(7):903-910
    林奕云, 郑家概, 付强, 等. DSPE-UPLC-MS-MS测定畜禽产品中壬基酚和双酚A[J]. 食品工业, 2016, 37(6):279-284

    Lin Y Y, Zheng J G, Fu Q, et al. Determination of nonylphenol and bisphenol A in animal products by DSPE-UPLC-MS/MS[J]. The Food Industry, 2016, 37(6):279-284(in Chinese)

    Gyllenhammar I, Glynn A, Darnerud P O, et al. 4-Nonylphenol and bisphenol A in Swedish food and exposure in Swedish nursing women[J]. Environment International, 2012, 43:20-28
    Niu Y, Zhang J, Duan H, et al. Bisphenol A and nonylphenol in foodstuffs:Chinese dietary exposure from the 2007 total diet study and infant health risk from formulas[J]. Food Chemistry, 2015, 167:320-325
    Geens T, Aerts D, Berthot C, et al. Diet and dietary exposure to bisphenol A were reviewed[J]. Food Chemical Toxicity, 2012, 50(10):3725-3740
    Wei Y, Han C, Geng Y, et al. Maternal exposure to bisphenol A during pregnancy interferes testis development of F1 male mice[J]. Environmental Science and Pollution Research, 2019, 14(4):1-14
    Jiang X, Yin L, Zhang N, et al. Bisphenol A induced male germ cell apoptosis via IFNbeta-XAF1-XIAP pathway in adult mice[J]. Toxicology and Applied Pharmacology, 2018, 355:247-256
    Zhang Y, Han L,Yang H, et al. Bisphenol A affects cell viability involved in autophagy and apoptosis in goat testis sertoli cell[J]. Toxicology and Applied Pharmacology, 2017, 55:137-147
    Birla H, Keswani C, Rai S N, et al. Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice[J]. Behavioral and Brain Functions, 2019, 15(1):9
    Xu W, Guo G, Li J, et al. Activation of Bcl-2-Caspase-9 apoptosis pathway in the testis of asthmatic mice[J]. PLoS One, 2016, 11:e0149353
    Misra B B. Metabolomics tools to study links between pollution and human health:An exposomics perspective[J]. Current Pollution Reports, 2019, 22(5):1-19
    Yu K, Yi S, Li B, et al. An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community[J]. Microbiome, 2019, 16(7):1-13
    Xie W P, Zhang W P, Ren J, et al Metabonomics indicates inhibition of fatty acid synthesis, beta-oxidation and the TCA cycle in triclocarban-induced cardiac metabolic alterations in male mice[J]. Journal of Agricultural and Food Chemistry, 2018, 66(6):1533-1542
    Zhou L L, Zhang W P, Chen H M, et al. Short-term effects of tributyl phosphate exposure on the metabolism of liver and susceptibility to hepatic encephalopathy in male mice[J]. Science of the Total Environment, 2017, 603-604:77-85
    Shen G L, Zhou L L, Liu W, et al. Di(2-ethylhexyl)phthalate alters the synthesis and β-oxidation of fatty acids and hinders ATP supply in mouse testes via UPLC-Q-Exactive Orbitrap MS-based metabonomics study[J]. Journal of Agricultural and Food Chemistry, 2017, 65(24):5056-5063
    Wishart D S, Tzur D, Knox C. HMDB:The human metabolome database[J]. Nucleic Acids Research, 2007, 35:521-526
    Ogata H, Goto S, Kanehisa M, et al. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1):27-30
    Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research, 2008, 36(1):480-484
    Steuer R, Kurths J, Fiehn O. Observing and interpreting correlations in metabolomic networks[J]. Bioinformatics, 2003, 19(8):1019-1026
    郭冰冰, 蒋新液, 裴晶晶, 等. 谷氨酰胺对高脂饮食诱导C57BL/6J小鼠肥胖和胰岛素抵抗的影响[J]. 中国病理生理杂志, 2018, 34(9):1720-1723

    Guo B B, Jiang X Y, Pei J J, et al. Effect of L-glutamine on obesity and insulin resistance in high-fat diet induced C57BL/6J mice[J]. Chinese Journal of Pathophysiology, 2018, 34(9):1720-1723(in Chinese)

    Murphy C J, Newsholme P. Importance of glutamine metabolism in murine macrophages and human monocytes to L-arginine biosynthesis and rates of nitrite or urea production[J]. Clinical Science, 1998, 95(4):397-407
    Perlman J M. Summary proceedings from the neurology group on hypoxic-ischemic encephalopathy[J]. Pediatrics, 2006, 117(3 Pt 2):S28-S33
    Bak L K, Schousboe A, Waagepetersen H S. The glutamate/GABA-glutamine cycle:Aspects of transport, neurotransmitter homeostasis and ammonia transfer[J]. Journal of Neurochemistry, 2006, 98(3):614-653
    Somashekar B S, Kamarajan P, Danciu T, et al. Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues[J]. Journal of Proteome Research, 2011, 10(11):5232-5241
    De Lorenzo A, Petroni M L, Masala S. Effect of acute and chronic branched-chain amino acids on energy metabolism and muscle performance[J]. Diabetes, Nutrition & Metabolism, 2003, 16(5-6):291-297
    Itoh T, Quastel J H. Ribonucleic acid biosynthesis in adult and infant rat brain in vitro[J]. Science,1969, 164(3875):79-80
    Tieu K, Perier C, Caspersen C, et al. D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease[J]. Journal of Clinical Investigation, 2003, 112(6):892-901
    Li T, Chen Y, Gua C, et al. Elevated circulating trimethylamine N-oxide levels contribute to endotelial dysfunction in aged ratsthrough vascular inflammation and oxidative stress[J]. Frontiers in Physiology, 2017, 8:350
    Wang Z, Tang W H, Buffa J A, et al. Prognostic value of choline and betaine depends on intestinal microbiota generated metabolite trimethylamine-N-oxide[J]. European Heart Journal, 2014, 35(14):904-910
    Birla H, Keswani C, Rai S N, et al. Neuroprotective effects of Withania somnifera in BPA induced cognitive dysfunction and oxidative stress in mice[J]. Behavioral and Brain Functions, 2019, 15(1):9
  • 加载中
计量
  • 文章访问数:  1653
  • HTML全文浏览数:  1653
  • PDF下载数:  45
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-06

基于高分辨质谱研究双酚A对小鼠血浆代谢谱的影响

    作者简介: 姬海南(1989-),男,助理研究员,研究方向为化学品安全,E-mail:1446678196@qq.com
  • 中国检验检疫科学研究院化学品安全研究所, 北京 100123
基金项目:

基公益性科研院所基本科研业务费专项资金资助项目(2018JK023,2018JK021,2017JK047);国家重点研发计划资助项目(2017YFF0211201)

摘要: 观察不同染毒剂量的双酚A(BPA)对C57BL6小鼠血浆代谢谱的影响,探讨其可能的毒性机制,并探寻毒性相关生物靶点。将小鼠随机分为对照组及1、10、50和250 μ g·kg-1组。利用高分辨质谱技术结合主成分分析、偏最小二乘分析等方法对血浆数据进行分析,发现对照组与各剂量组基本分离,并随染毒剂量的增加,各组逐渐偏离对照组,提示小鼠机体具有发生紊乱的趋势;运用Pathway Analysis数据库对差异性代谢物进行拓扑分析;运用Cytoscape和Metscape进行代谢产物的相关性分析和模块化分析。从血浆中筛选出27种差异代谢物,发现BPA的干预作用可能与亚油酸代谢、花生四烯酸代谢、丙氨酸、天冬氨酸和谷氨酸代谢、丙酮酸代谢、鞘脂类代谢和磷酸肌醇代谢等通路有关;对血浆差异性代谢产物的相关性分析和模块化分析结果表明,7个模块之间关系密切,BPA的干预作用可能与血浆7个模块代谢物的差别相关;BPA染毒14 d后,其毒性作用机制可能与丙酮酸、花生四烯酸、亮氨酸和亚油酸等生物靶点的异常相关,丙酮酸、花生四烯酸、亮氨酸和亚油酸等生物靶点可作为BPA引起机体毒性的标志物。

English Abstract

参考文献 (37)

目录

/

返回文章
返回