佳乐麝香对斑马鱼胚胎甲状腺激素的影响

李明, 尹晓宇, 陈浩, 王欢, 宋磊, 董文静, 赵宝全, 于永利, 董武, 杨景峰. 佳乐麝香对斑马鱼胚胎甲状腺激素的影响[J]. 生态毒理学报, 2020, 15(3): 81-89. doi: 10.7524/AJE.1673-5897.20200220001
引用本文: 李明, 尹晓宇, 陈浩, 王欢, 宋磊, 董文静, 赵宝全, 于永利, 董武, 杨景峰. 佳乐麝香对斑马鱼胚胎甲状腺激素的影响[J]. 生态毒理学报, 2020, 15(3): 81-89. doi: 10.7524/AJE.1673-5897.20200220001
Li Ming, Yin Xiaoyu, Chen Hao, Wang Huan, Song Lei, Dong Wenjing, Zhao Baoquan, Yu Yongli, Dong Wu, Yang Jingfeng. Effect of Galaxolide on Thyroid Hormones in Zebrafish Embryos[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 81-89. doi: 10.7524/AJE.1673-5897.20200220001
Citation: Li Ming, Yin Xiaoyu, Chen Hao, Wang Huan, Song Lei, Dong Wenjing, Zhao Baoquan, Yu Yongli, Dong Wu, Yang Jingfeng. Effect of Galaxolide on Thyroid Hormones in Zebrafish Embryos[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 81-89. doi: 10.7524/AJE.1673-5897.20200220001

佳乐麝香对斑马鱼胚胎甲状腺激素的影响

    作者简介: 李明(1994-),女,硕士研究生,研究方向为药理及毒理学,E-mail:liming66cherry@163.com
  • 基金项目:

    基国家自然科学基金资助项目(21567019,81360508);内蒙古自治区自然科学基金资助项目(2018MS08033;2020MS08103);内蒙古自治区高等学校科学研究项目(NJZC17203);内蒙古草原英才2020年度滚动支持项目(董武);内蒙古民族大学科学研究基金资助项目(NMDGP1505);内蒙古自治区毒物监控及毒理学重点实验室开放项目(MDK2019074,MDK2019076);蒙药研发国家地方联合工程研究中心开放基金资助项目(MDK2019051)

  • 中图分类号: X171.5

Effect of Galaxolide on Thyroid Hormones in Zebrafish Embryos

  • Fund Project:
  • 摘要: 佳乐麝香(galaxolide,HHCB)作为主要的多环麝香之一,被广泛应用于药品和个人护理品(pharmaceuticals and personal care products,PPCPs)中,残留在环境中造成污染,并在生物体内富集,对水生生物及人类健康造成潜在威胁。为探究环境浓度下HHCB的环境危害,选用斑马鱼(Danio rerio)作为模式动物,监测了HHCB暴露下其死亡率、孵化率、心率、心囊面积、甲状腺素含量和甲状腺激素关联基因表达量的变化,并探究相关毒理机制。研究结果表明,HHCB可导致斑马鱼胚胎死亡率增加、心率降低、孵化率下降以及甲状腺素关联基因Dio2ThrαThrβ的显著变化。0.005 mmol·L-1 HHCB可引起总三碘甲状腺原氨酸(TT3)升高和总四碘甲状腺原氨酸(TT4)的显著降低。通过以上研究可知,HHCB可造成斑马鱼胚胎甲状腺激素分泌和调节的紊乱。
  • 加载中
  • Wu Q, Li H, Leng Y, et al. Determination of muscone in rats plasma following oral administration of artificial musk using of combined headspace gas chromatography-mass spectrometry[J]. Journal of Spectroscopy, 2014, 5(5):1-5
    van der Burg B, Schreurs R, van der Linden S, et al. Endocrine effects of polycyclic musks:Do we smell a rat?[J]. International Journal of Andrology, 2008, 31(2):188-193
    Tseng W J, Tsai S W. Assessment of dermal exposures for synthetic musks from personal care products in Taiwan[J]. Science of the Total Environment, 2019, 669:160-167
    Lu Y, Yuan T, Wang W, et al. Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China[J]. Environmental Pollution, 2011, 159(12):3522-3528
    Wong F, Robson M, Melymuk L, et al. Urban sources of synthetic musk compounds to the environment[J]. Environmental Science:Processes & Impacts, 2019, 21(1):74-88
    Fromme H, Otto T, Pilz K. Polycyclic musk fragrances in different environmental compartments in Berlin (Germany)[J]. Water Research, 2001, 35(1):121-128
    Homem V, Magalhães I, Alves A, et al. Assessing seasonal variation of synthetic musks in beach sands from Oporto coastal area:A case study[J]. Environmental Pollution, 2017, 226:190-197
    Groz M P, Bueno M M, Rosain D, et al. Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC-MS/MS[J]. The Science of the Total Environment, 2014, 49:162-169
    Huang W, Xie Z, Yan W, et al. Occurrence and distribution of synthetic musks and organic UV filters from riverine and coastal sediments in the Pearl River estuary of China[J]. Marine Pollution Bulletin, 2016, 111:153-159
    Rimkus G, Wolf M. Polycyclic musk fragrances in human adipose tissue and human milk[J]. Chemosphere, 1996, 33(10):2033-2043
    Carlsson G, Orn S, Andersson P, et al. The impact of musk ketone on reproduction in zebrafish (Danio rerio)[J]. Marine Environmental Research, 2000, 50:237-241
    Rimkus G G, Wolf M. Nitro musk fragrances in biota from freshwater and marine environment[J]. Chemosphere, 1995, 30:641-651
    Qu L, Zhao C, Wang C, et al. Anovel zebrafish (Danio rerio) assay for assessing musk ambrette-induced toxicity[J]. Bulletin of Environmental Contamination Toxicology, 2018, 101(1):80-85
    Carlsson G, Norrgren L. Synthetic musk toxicity to early life stages of zebrafish (Danio rerio)[J]. Archives of Environmental Contamination Toxicology, 2004, 46(1):102-105
    Pablos M V, Jiménez M,San Segundo L, et al. Effects of dietary exposure of polycyclic musk HHCB on the metamorphosis of Xenopus laevis[J]. Environmental Toxicology and Chemistry, 2016, 35(6):1428-1435
    Porazzi P, Calebiro D, Benato F, et al. Thyroid gland development and function in the zebrafish model[J]. Molecular and Cellular Endocrinology, 2009, 312(1-2):14-23
    Wieshammer S, Keck F, Waitzinger J, et al. Acute hypothyroidism slows the rate of left ventricular diastolic relaxation[J]. Canadian Journal of Physiology Pharmacology, 1989, 67(9):1007-1010
    Schultz M, Kistorp C, Raymond I, et al. Cardiovascular events in thyroid disease:A population based, prospective study[J]. Hormone Metabolic Research, 2011, 43(9):653-659
    Jabbar A, Iervasi G, Pingitore A, et al. Thyroid hormones and cardiovascular disease[J]. Nature Reviews, 2017, 14:39-55
    Lein I R K, Jamaa K A O. Thyroid hormone and the cardiovascular system[J]. Mechanisms of Disease, 2001, 344:501-507
    Sharma D, Sehgal P, Mathew S, et al. A genome-wide map of circular RNAs in adult zebrafish[J]. Scientific Reports, 2019, 9(1):3432
    Howe K, Clark M, Torroja C, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446):498-503
    Kari G, Rodeck U, Dicker A. Zebrafish:An emerging model system for human disease and drug discovery[J]. Clinical Pharmacology Therapeutics, 2007, 82(1):70-80
    Shin J, Fishman M. From zebrafish to human:Modular medical models[J]. Annual Review of Genomics Human Genetics, 2002, 3:311-340
    Saleem S, Kannan R. Zebrafish:An emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery[J]. Cell Death Discovery, 2018, 4:45
    Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish[J]. Annual Review of Genetics, 2012, 46:397-418
    Wang X, Yu Q, Wu Q, et al. Genetic interaction between pku300 and fbn2b controls endocardial cell proliferation and valve development in zebrafish[J]. Journal of Cell Science, 2013, 126:1381-1391
    Rihel J, Ghosh M. Drug Discovery and Evaluation:Pharmacological Assays[M]. Springer, 2016:4071-4135
    Newman M, Ebrahimie E, Lardelli M. Using the zebrafish model for Alzheimer's disease research[J]. Frontiers in Genetics, 2014, 5:1-10
    Matthew G, Bailey J T, Hyde R D, et al. The zebrafish as a model for complex tissue regeneration[J]. Trends in Genetics, 2013, 29(11):611-620
    Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease[J]. Cardiovascular Research, 2011, 91(2):279-288
    Dong W, Wang F, Fang M, et al. Use of biological detection methods to assess dioxin-like compounds in sediments of Bohai Bay, China[J]. Ecotoxicology and Environmental Safety, 2019, 173:339-346
    Roosens L, Covaci A, Neels H. Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application[J]. Chemosphere, 2007, 69(10):1540-1547
    Breitholtz M, Wollenberger L, Dinan L. Effects of four synthetic musks on the life cycle of the harpacticoid copepod Nitocra spinipes[J]. Aquatic Toxicology, 2003, 63(2):103-118
    Carlsson G, Norrgren L. Synthetic musk toxicity to early life stages of zebrafish (Danio rerio)[J]. Archives of Environmental Contamination Toxicology, 2004, 46(1):102-105
    Parolini M, Magni S, Traversi I, et al. Environmentally relevant concentrations of galaxolide (HHCB) and tonalide (AHTN) induced oxidative and genetic damage inDreissena polymorpha[J]. Journal of Hazardous Materials, 2015, 285:1-10
    Yamauchi R, Ishibashi H, Hirano M, et al. Effects of synthetic polycyclic musks on estrogen receptor, vitellogenin, pregnane X receptor, and cytochrome P4503A gene expression in the livers of male medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2008, 90(4):261-268
    Li M, Yao L, Chen H, et al. Chiral toxicity of muscone to embryonic zebrafish heart[J]. Aquatic Toxicology, 2020, 222:105451
    Wieshammer S, Keck F S, Waitzinger J, et al. Acute hypothyroidism slows the rate of left ventricular diastolic relaxation[J]. Canadian Journal of Physiology and Pharmacology, 1989, 67(9):1007-1010
    Cooper D S. Approach to the patient with subclinical hyperthyroidism[J]. The Journal of Clinical Endocrinology & Metabolism, 2007, 92(1):3-9
    Iannone D. The cardiovascular system in hypothyroidism[J]. Policlinico Prat, 1967, 74(15):497-507
    Heijlen M, Houbrechts A M, Darras V M. Zebrafish as a model to study peripheral thyroid hormone metabolism in vertebrate development[J]. General and Comparative Endocrinology, 2013, 188:289-296
  • 加载中
计量
  • 文章访问数:  1880
  • HTML全文浏览数:  1880
  • PDF下载数:  68
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-20

佳乐麝香对斑马鱼胚胎甲状腺激素的影响

    作者简介: 李明(1994-),女,硕士研究生,研究方向为药理及毒理学,E-mail:liming66cherry@163.com
  • 1. 内蒙古民族大学动物科学技术学院, 内蒙古自治区毒物监控及毒理学重点实验室, 通辽 028000;
  • 2. 军事科学院军事医学研究院毒物药物研究所, 抗毒药物与毒理学国家重点实验室, 北京 100850;
  • 3. 内蒙古民族大学生命科学与食品学院, 通辽 028000
基金项目:

基国家自然科学基金资助项目(21567019,81360508);内蒙古自治区自然科学基金资助项目(2018MS08033;2020MS08103);内蒙古自治区高等学校科学研究项目(NJZC17203);内蒙古草原英才2020年度滚动支持项目(董武);内蒙古民族大学科学研究基金资助项目(NMDGP1505);内蒙古自治区毒物监控及毒理学重点实验室开放项目(MDK2019074,MDK2019076);蒙药研发国家地方联合工程研究中心开放基金资助项目(MDK2019051)

摘要: 佳乐麝香(galaxolide,HHCB)作为主要的多环麝香之一,被广泛应用于药品和个人护理品(pharmaceuticals and personal care products,PPCPs)中,残留在环境中造成污染,并在生物体内富集,对水生生物及人类健康造成潜在威胁。为探究环境浓度下HHCB的环境危害,选用斑马鱼(Danio rerio)作为模式动物,监测了HHCB暴露下其死亡率、孵化率、心率、心囊面积、甲状腺素含量和甲状腺激素关联基因表达量的变化,并探究相关毒理机制。研究结果表明,HHCB可导致斑马鱼胚胎死亡率增加、心率降低、孵化率下降以及甲状腺素关联基因Dio2ThrαThrβ的显著变化。0.005 mmol·L-1 HHCB可引起总三碘甲状腺原氨酸(TT3)升高和总四碘甲状腺原氨酸(TT4)的显著降低。通过以上研究可知,HHCB可造成斑马鱼胚胎甲状腺激素分泌和调节的紊乱。

English Abstract

参考文献 (42)

目录

/

返回文章
返回