膜生物反应器中EPS对污泥絮体形成的影响及其膜污染特性研究

王浩宇, 张军, 丁一, 左薇. 膜生物反应器中EPS对污泥絮体形成的影响及其膜污染特性研究[J]. 环境工程学报, 2015, 9(2): 645-652. doi: 10.12030/j.cjee.20150223
引用本文: 王浩宇, 张军, 丁一, 左薇. 膜生物反应器中EPS对污泥絮体形成的影响及其膜污染特性研究[J]. 环境工程学报, 2015, 9(2): 645-652. doi: 10.12030/j.cjee.20150223
Wang Haoyu, Zhang Jun, Ding Yi, Zuo Wei. Research of extracellular polymeric substances (EPS) to formation of sludge flocs in membrane bioreactor and its membrane fouling characteristics[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 645-652. doi: 10.12030/j.cjee.20150223
Citation: Wang Haoyu, Zhang Jun, Ding Yi, Zuo Wei. Research of extracellular polymeric substances (EPS) to formation of sludge flocs in membrane bioreactor and its membrane fouling characteristics[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 645-652. doi: 10.12030/j.cjee.20150223

膜生物反应器中EPS对污泥絮体形成的影响及其膜污染特性研究

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2013ZX07201007)

    高等学校博士学科点专项科研基金资助项目(20112302110060)

    国家创新研究群体科学基金资助项目(51121062)

    中央高校基本科研业务费专项基金(HIT.NSRIF.2015096)

  • 中图分类号: X703

Research of extracellular polymeric substances (EPS) to formation of sludge flocs in membrane bioreactor and its membrane fouling characteristics

  • Fund Project:
  • 摘要: 为了给减缓膜生物反应器(MBR)膜污染提供新思路,对MBR中EPS各组分对污泥聚集性能的影响及其膜污染特性进行研究。通过分析MBR中污泥的聚集性,发现原始污泥的聚集速率常数为0.0151,提取EPS后污泥的聚集速率常数为0.00181,由此可以看出EPS在污泥聚集的过程中起重要作用。为了进一步明确EPS各组分对MBR中污泥聚集性能的影响,利用扩展的DLVO理论研究MBR中EPS及其各组分对污泥聚集性能的影响,发现MBR中EPS里粘液的二级能量最小值大约为-0.94 KT,松散型EPS(LB-EPS)为-2.98 KT,紧密型EPS(TB-EPS)为-3.87 KT,说明TB-EPS在污泥聚集的过程中起重要作用。进一步通过三维荧光光谱及EPS浓度分析,发现EPS各组分浓度及结构的不同导致EPS各组分对污泥聚集性起不同的作用。通过吸附实验、原子力显微镜观察发现EPS各组分的膜污染速率为:上清液 < 粘液 < LB-EPS < TB-EPS,由此,可以推测出减少粘液和LB-EPS含量可有效降低膜污染,同时对污泥絮体结构影响较小。
  • 加载中
  • [1] Le-Clech P., Chen V., Fane T. A. G. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 2006, 284(1-2): 17-53
    [2] 高元, 李绍峰, 陶虎春.MBR污泥混合液特性变化及膜污染关系研究. 环境工程学报, 2011, 5(1):28-32 Gao Y., Li S. F., Tao H. C. Research on membrane fouling and the changes of sludge mixed liquor characteristics in MBR. Chinese Journal of Environmental Engineering, 2011, 5(1):28-32(in Chinese)
    [3] 何磊, 王志伟, 吴志超, 等. MBR工艺中溶解性有机物的分子量和EEM解析. 环境工程学报, 2011, 5(3): 563-569 He L., Wang Z. W., Wu Z. C., et al. Molecular weight of dissolved organic matter in MBR and analysis of EEM. Chinese Journal of Environmental Engineering, 2011,5(3):563-569 (in Chinese)
    [4] 吕建国. 膜生物反应器处理马铃薯淀粉工艺废水. 环境工程学报, 2010, 4(8): 1776-1778 Lü J. G. Treatment of potato starch wastewater with membrane bioreactor. Chinese Journal of Environmental Engineering, 2010, 4(8): 1776-1778(in Chinese)
    [5] Wang Q., Wan Z., Wu Z., et al. Sludge reduction and process performance in a submerged membrane bioreactor with aquatic worms. Chemical Engineering Journal, 2011, 172 (2-3): 929-935
    [6] Oh Y. K., Lee K. R., Ko K. B., et al. Effects of chemical sludge disintegrationon the performances of wastewater treatment by membrane bioreactor. Water Research, 2007, 41(12): 2665-2671
    [7] Meng F., Chae S. R., Drews A. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 2009, 43(6): 1489-1512
    [8] Tian Y., Li Z. P., Chen L., et al. Role of extracellular polymeric substances(EPSs) in membrane fouling of membrane bioreactor coupled with worm reactor. Bioresource Technology, 2012, 123: 566-573
    [9] Tian Y., Li Z. P., Ding Y., et al. Identification of the change in fouling potential of soluble microbial products (SMP) in membrane bioreactor coupled with worm reactor. Water Research, 2013, 47(6): 2015-2024
    [10] Liu Y., Yang C. H., Li J. Influence of extracellular polymeric substances on Pseudomonas aeruginosa transport and deposition profiles in porous media. Environmental Science & Technology, 2007, 41(1): 198-205
    [11] Liu X.M., Sheng G.P., Luo H.W., et al. Contribution of extracellular polymeric substances (EPS) tothe sludge aggregation. Environmental Science & Technology,2010,44(11):4355-4360
    [12] Bae T. H., Tak T. M. Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor. Journal of Membrane Science, 2005, 264(1): 151-160
    [13] Kim M. G., Nakhla G. Comparative studies on membrane fouling between two membrane-based biological nutrient removal systems. Journal of Membrane Science, 2009, 331(1-2): 91-99
    [14] Tian Y., Lu Y., Li Z. P. Performance analysis of a combined system of membrane bioreactor and worm reactor: Wastewater treatment,sludge reduction and membrane fouling. Bioresource Technology, 2012, 121: 176-182
    [15] Wang H., Gu J. H., Qiu G. Z. Evaluation of surface free energy of polymers by contact angle goniometry. J.Cent.South Univ.,2006, 37(5):942-947
    [16] Yu G. H., He P. J., Shao L. M., et al. Stratification structure of sludge flocs with implications to dewaterability.Environmental Science & Technology, 2008, 42(21): 7944-7949
    [17] 刘晓猛.微生物聚集体的相互作用及形成机制.合肥:中国科技大学硕士学位论文,2008 Liu X.M. Interaetions and formation meehanisms of microbial aggregates.Hefei:Master Dissertation of University of Seienee and Technology of China,2008(in Chinese)
    [18] Redman J. A., Walker S. L., Elimelech M. Bacterial adhesion and transport in porous media: Role of the secondary energy minimum. Environmental Science & Technology, 2004, 38(6): 1777-1785
    [19] Le-Clech P., Chen V., Fane T. A. G. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 2006, 284(1-2): 17-53
    [20] Lee J., Ahn W. Y., Lee C. H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submeged membrane bioreactor. Water Research, 2001, 35(10): 2435-2445
    [21] Ng H. Y., Tan T. W., Ong S. L. Membrane fouling of submerged membrane bioreactors: Impact of mean cell residence time and the contributing factors. Environmental Science & Technology, 2006, 40(8): 2706-2713
    [22] Her N., Amy G., Plottupecheux A., et al. Identification of nanofiltration membrane foulants. Water Research, 2007, 41(17): 936-3947
    [23] Subramani A., Huang X., Hoek E. M. V. Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes. Journal of Colloid and Interface Science, 2009, 336(1): 13-20
    [24] Wang Z., Wu Z., Tang S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research,2009,43(9): 2504-2512
    [25] Ye Y., Clech P. L., Chen V., et al. Evolution of fouling during crossflow filtration of model EPS solutions. Journal of Membrane Science, 2005, 264(1): 190-199
  • 加载中
计量
  • 文章访问数:  2137
  • HTML全文浏览数:  1450
  • PDF下载数:  987
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-05-18
  • 刊出日期:  2015-02-07
王浩宇, 张军, 丁一, 左薇. 膜生物反应器中EPS对污泥絮体形成的影响及其膜污染特性研究[J]. 环境工程学报, 2015, 9(2): 645-652. doi: 10.12030/j.cjee.20150223
引用本文: 王浩宇, 张军, 丁一, 左薇. 膜生物反应器中EPS对污泥絮体形成的影响及其膜污染特性研究[J]. 环境工程学报, 2015, 9(2): 645-652. doi: 10.12030/j.cjee.20150223
Wang Haoyu, Zhang Jun, Ding Yi, Zuo Wei. Research of extracellular polymeric substances (EPS) to formation of sludge flocs in membrane bioreactor and its membrane fouling characteristics[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 645-652. doi: 10.12030/j.cjee.20150223
Citation: Wang Haoyu, Zhang Jun, Ding Yi, Zuo Wei. Research of extracellular polymeric substances (EPS) to formation of sludge flocs in membrane bioreactor and its membrane fouling characteristics[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 645-652. doi: 10.12030/j.cjee.20150223

膜生物反应器中EPS对污泥絮体形成的影响及其膜污染特性研究

  • 1. 哈尔滨工业大学市政环境工程学院, 哈尔滨 150090
基金项目:

国家"水体污染控制与治理"科技重大专项(2013ZX07201007)

高等学校博士学科点专项科研基金资助项目(20112302110060)

国家创新研究群体科学基金资助项目(51121062)

中央高校基本科研业务费专项基金(HIT.NSRIF.2015096)

摘要: 为了给减缓膜生物反应器(MBR)膜污染提供新思路,对MBR中EPS各组分对污泥聚集性能的影响及其膜污染特性进行研究。通过分析MBR中污泥的聚集性,发现原始污泥的聚集速率常数为0.0151,提取EPS后污泥的聚集速率常数为0.00181,由此可以看出EPS在污泥聚集的过程中起重要作用。为了进一步明确EPS各组分对MBR中污泥聚集性能的影响,利用扩展的DLVO理论研究MBR中EPS及其各组分对污泥聚集性能的影响,发现MBR中EPS里粘液的二级能量最小值大约为-0.94 KT,松散型EPS(LB-EPS)为-2.98 KT,紧密型EPS(TB-EPS)为-3.87 KT,说明TB-EPS在污泥聚集的过程中起重要作用。进一步通过三维荧光光谱及EPS浓度分析,发现EPS各组分浓度及结构的不同导致EPS各组分对污泥聚集性起不同的作用。通过吸附实验、原子力显微镜观察发现EPS各组分的膜污染速率为:上清液 < 粘液 < LB-EPS < TB-EPS,由此,可以推测出减少粘液和LB-EPS含量可有效降低膜污染,同时对污泥絮体结构影响较小。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回