

DOI:10.7524/AJE.1673-5897.20190830001

翟家欣, 张欣然, 杨欣. 新型含氮消毒副产物的生成机制及毒性研究进展[J]. 生态毒理学报, 2020, 15(1): 17-33

Zhai J X, Zhang X R, Yang X. Research overview on formation mechanism and toxicity for emerging nitrogenous disinfection byproducts [J]. Asian Journal of Ecotoxicology, 2020, 15(1): 17-33 (in Chinese)

新型含氮消毒副产物的生成机制及毒性研究进展

翟家欣,张欣然,杨欣*

中山大学环境科学与工程学院,广州 510006 收稿日期:2019-08-30 录用日期:2019-10-29

摘要:含氮消毒副产物(N-DBPs)具有很高的生物毒性和致癌性,近年来受到广泛关注。本文对目前 N-DBPs 的研究进展进行 了概述,重点总结了典型 N-DBPs 包括卤乙腈(HANs)、卤代硝基甲烷(HNMs)、卤代乙酰胺(HAcAms)和亚硝胺(NAs)的生成机 制;并归纳了 N-DBPs 的毒性效应和毒性机制。根据 N-DBPs 的生成途径,应该重点控制水中含胺类氮源前体物,并优化设计 消毒剂种类和投加方式,在控制病原体的前提下,尽量削减高毒性 N-DBPs 的生成。本研究旨在为控制消毒副产物生成、提高 饮用水水质提供理论参考。

关键词:含氮消毒副产物;饮用水;毒性作用;生成机制 文章编号:1673-5897(2020)1-017-17 中图分类号:X171.5 文献标识码:A

Research Overview on Formation Mechanism and Toxicity for Emerging Nitrogenous Disinfection Byproducts

Zhai Jiaxin, Zhang Xinran, Yang Xin*

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, ChinaReceived 30 August 2019accepted 29 October 2019

Abstract: Nitrogenous disinfection byproducts (N-DBPs) have received attention in recent years because of high biological toxicity and carcinogenicity. In this paper, the research progress on N-DBPs is summarized, emphatically formation mechanism and the toxicity effects of the typical N-DBPs, including haloacetonitriles (HANs), halonitromethanes (HNMs), haloacetamides (HAcAms) and N-nitrosamines (NAs). Based on the formation pathways and toxicological effets, amine-containing precursors should be reduced before disinfection and the design of disinfection systems should be optimized to minimize N-DBPs formation and meet the pathogen reduction goals. This review paper provides information for reducing the generation of disinfection by-products and improving drinking water quality. **Keywords**: nitrogenous disinfection byproducts; drinking water; toxicological effect; formation mechanism

消毒是水处理过程中必不可少的环节,对预防 介水传染性疾病传播起到了非常关键的作用。但是 消毒剂往往具有较强的氧化性,在消毒过程中可能与水中的天然有机质、人工合成化学品或溴离子等

基金项目:国家自然科学基金资助项目(21876210,21622706)

作者简介:翟家欣(1995—),女,硕士研究生,研究方向为环境化学,E-mail: zhaijx3@mail2.sysu.edu.cn

^{*} 通讯作者(Corresponding author), E-mail: yangx36@mail.sysu.edu.cn

反应产生消毒副产物(DBPs)。消毒副产物的研究源于 20 世纪 70 年代中期,人们首次在氯化消毒后的水中发现了三卤甲烷(THMs)^[1]。随后三氯甲烷(TCM)被证实对啮齿类动物具有致癌性,这使得DBPs逐渐得到关注。20 世纪 80 年代,卤乙酸(HAAs)和卤乙腈(HANs)等氯化消毒副产物被相继检出^[2-3]。已有超过 600 种 DBPs 被发现,目前科学家对 80 余种 DBPs 的生成机制、毒性和致癌性开展研究^[4]。但是,以往研究主要集中于 THMs 和 HAAs 等常见含碳消毒副产物(C-DBPs),各国的饮用水水质标准中也对 THMs 和 HAAs 等进行了明确规定。

与常规 C-DBPs 不同,人们把含有氮元素的消 毒副产物统称为含氮消毒副产物(N-DBPs)。常见的 N-DBPs 包括 HANs、卤乙酰胺(HAcAms)、卤代硝基 甲烷(HNMs)和亚硝胺(NAs)等。虽然 N-DBPs 较少 纳入各国饮用水水质标准,但哺乳动物体外细胞实 验表明,HANs、HAcAms 和 HNMs 的细胞毒性和遗 传毒性远高于 THMs 和 HAAs^[5-7]。同时,NAs 被认 为是消毒副产物中致癌风险最高的物质之一。动物 实验表明,N-亚硝基二乙胺(NDEA)的单位致癌风险 比 THMs 和 HAAs 高 3 个数量级^[8]。因此,尽管 N-DBPs 生成量普遍低于 C-DBPs,但其对人体健康的 威胁不容忽视。

值得注意的是,近年来一些饮用水源受到藻类 水华和上游废水排放污染,导致水中溶解性有机氮 水平逐渐增长。而这些溶解性有机氮可作为 N-DB-Ps 前体物,使得水中 N-DBPs 浓度水平显著增大并 显示出高毒性风险,威胁饮用水供水安全。因此,如 何控制 DBPs 生成已成为饮用水供水安全保障领域 的关键问题之一,其中,N-DBPs 的生成机制及毒性 作用值得重点关注。本文汇总整理了国内外相关研 究资料,对 N-DBPs 的生成水平、生成机制以及毒性 效应进行归纳分类,为 N-DBPs 控制提供理论参考。

1 含氮消毒副产物的种类及生成水平(Types and occurrence of N-DBPs)

1.1 含氮消毒副产物的种类及浓度限值

表1汇总了 HANs、HAcAms 和 HNMs 在饮用 水中的限值。HANs 主要在氯化或氯胺消毒过程中 生成,其前体物包括藻类、富里酸和蛋白质类物质 等^[9]。目前对 HANs 的研究主要集中于二氯乙腈 (DCAN)、二溴乙腈(DBAN)、溴氯乙腈(BCAN)和三 氯乙腈(TCAN)。HNMs 是 N-DBPs 中毒性很高的 一类物质,HNMs 包括9 种物质,三氯硝基甲烷(TC-NM)是最早被确认为饮用水 DBPs 的一种 HNMs,也 是目前被研究的最深入的一种 HNMs^[10]。HAcAms 是在 2000—2002 年美国饮用水厂出水 DBPs 生成情 况调查中被首次检出^[4]。HAcAms 有 13 种,目前研究 主要集中于二氯乙酰胺(DCAcAm)、二溴乙酰胺 (DBAcAm)和三氯乙酰胺(TCAcAm)。美国、中国以及

中文名称 Chinese name	英文名称及缩写 English name and abbreviation	中国饮用水卫生标准/(µg·L ⁻¹) Standards for Drinking Water Quality in China/(µg·L ⁻¹)	世界卫生组织(WHO) 饮用水卫生标准/(µg·L ⁻¹) World Health Organization (WHO) Guidelines/(µg·L ⁻¹)
卤乙腈	Haloacetonitriles (HANs)	_	
二氯乙腈	Dichloroacetonitrile (DCAN)	-	20
溴氯乙腈	Bromochloroacetonitrile (BCAN)		/
二溴乙腈	Dibromoacetonitrile (DBAN)		70
三氯乙腈	Trichloroacetonitrile (TCAN)		/
三溴乙腈	Tribromoacetonitrile (TBAN)	/	/
卤代硝基甲烷	Halonitromethanes (HNMs)	-	
三氯硝基甲烷	Trichloronitromethane (TCNM)	-	/
卤乙酰胺	Haloacetamides (HAcAms)	_	
二氯乙酰胺	Dichloroacetamide (DCAcAm)	-	/
二溴乙酰胺	Dibromoacetamide (DBAcAm)		/
三氯乙酰胺	Trichloroacetamide (TCAcAm)		/

表1 含氮消毒副产物(HANs、HNMs、HAcAms)在饮用水中的限值 Table 1 Standard limits of nitrogenous disinfection by-products (HANs, HNMs, HAcAms) in drinking water

欧盟尚未对饮用水中上述 N-DBPs 出水浓度限值作 出规定,但是,世界卫生组织(WHO)建议水中 DCAN 和 DBAN 水平分别不高于 20 和 70 μg·L⁻¹。

NAs 是水处理领域新发现的一类非卤代 N-DBPs。1989年,N-亚硝基二甲胺(NDMA)在加拿大安大略省的饮用水中被检出,引起人们关注^[11]。如表2所示,NAs包括NDMA、N-亚硝基吡咯烷、N-亚 硝基吗啉、NDEA、N-亚硝基二丙胺、N-亚硝基二丁 胺、N-亚硝基二苯胺、N-亚硝基甲基乙基胺和 N-亚 硝基哌啶,代表物质是 NDMA。NAs由于其健康风 险非常高,因此多个组织和机构都对其在饮用水中 的浓度限值作出明确规定(表 2),其中 NDMA 是关 注度最高的一种。不同的 NAs 之间的最大污染限 值(maximum contaminant level, MCL)差别较大,如 NDEA 的 MCL 为 2 ng·L⁻¹,而 N-亚硝基二苯胺 (NDPHA)的 MCL 高达 70 000 ng·L⁻¹。

1.2 含氮消毒副产物在我国饮用水中的存在水平

我国关于饮用水中 N-DBPs 浓度的调查近 10 年才逐步展开,但是大多数集中在经济发达的大城

市,在小城市以及农村地区开展的调查比较少,西北 部地区如新疆、西藏和甘肃等省更少。样本主要为 水源水、饮用水厂出水、管网水以及水龙头出水。表 3 汇总了我国饮用水以及水源水中 HANs、HAcAms 和 HAMs 的浓度水平,其值在几十 ng·L⁻¹至几 μg· L^{-1} 水平。其中,饮用水中 HANs 的浓度最高,浓度 范围为 5.3~39.2 µg·L⁻¹。与美国饮用水 HANs 水 平(3.0~14.0 μg·L⁻¹)^[4]、澳大利亚饮用水 HANs 水 平(最高值 36.0 μg·L⁻¹)^[13]和苏格兰饮用水 HANs 水 平(最高值 4 μg·L⁻¹)^[14]相比,我国饮用水中 HANs 浓度相当或偏高。饮用水中 HAcAms 的平均浓度 水平低于 HANs, 最高值均低于 10.0 μg·L⁻¹。 HNMs 在我国饮用水中浓度<3.0 μg·L⁻¹,高于澳大 利亚饮用水中 HNMs 浓度(最高值 0.97 μg·L⁻¹)^[15], 但远低于美国饮用水中 HNMs 浓度(最高值 10.0 µg ·L⁻¹)^[4]。另外,2019年的一项研究调查了用户端水 处理设备对自来水中消毒副产物去除效率,结果表 明,水龙头出水中 HANs 浓度的最高值为 9.0 µg· L⁻¹,经过水处理设备后 HANs 能被完全去除^[16]。

	表 2 亚硝胺类含氮消毒副产物在饮用水中的最大污染限值 ^[12]
Table 2	Maximum concentration level of N-nitrosamines in drinking water ^[12]

		饮用水中最大污染限值/(ng・L ⁻¹)								
		Maximum concentration level in drinking water/($ng \cdot L^{-1}$)								
中文名称 Chinese name	英文名称及缩写 English name and abbreviation	美国环境保护局 United States Environmental Protection Agency	美国加州 公共卫生部 California Department of Public Health	世界卫生组织 World Health Organization	加拿大 卫生部 Health Canada	加拿大 安大略省 环境部 The Ontario Ministry of the Environment	澳大利亚 国家卫生与医学 研究理事会 Australian National Health and Medical Research Council			
N-亚硝基 二甲胺	N-nitrosodimethylamine (NDMA)	7	10	100	40	9	100			
N-亚硝基 甲基乙基胺	N-nitrosomethylethylamine (NMEA)	20	_	_	_	_	_			
N-亚硝基 二乙胺	N-nitrosodiethylamine (NDEA)	2	10	—	_	9	—			
N-亚硝基 吡咯烷	N-nitrosopyrrolidine (NPYR)	200	_	—	_	—	—			
N-亚硝基 二丁胺	N-nitroso-di-n-butylamine (NDBA)	60	—	—	_	—	—			
N-亚硝基 二丙胺	N-nitroso-di-n-propylamine (NDPA)	50	10	_	_	9	_			
N-亚硝基 二苯胺	N-nitroso-di-phenylamine (NDPHA)	70 000	_	_	_	_	_			

表4汇总了我国近10年水源水以及饮用水中 NAs浓度。结果显示,我国水源水及饮用水中NAs 浓度基本低于100 ng·L⁻¹,其浓度水平高于英国 (ND~15.6 ng·L⁻¹)^[26]和日本(水源水:ND~4.3 ng· L⁻¹;饮用水厂出水:ND~10 ng·L⁻¹)的^[27]。另一项 覆盖全国23个省、44个大城市和小城镇的饮用水 调查也发现,我国饮用水厂出水和龙头出水中NAs 的检出率明显高于美国^[28],这与我国的工业和生活 污水污染有关^[29],其中,NAs最高值出现在河南省 贾鲁河流域的地下水中^[30]。另外,在一项饮用水管 网中NDMA浓度调查发现,在远离处理厂的管网中 检测到更高浓度的NDMA^[31],此现象在其他国家也 有报道^[26],说明消毒剂和前体物之间的接触时间在 NAs 生成上起着重要作用。2010年, Wang 等^[32]对中国 30个城市 54个饮用水处理厂出水的 NAs 浓度水平进行研究,研究范围覆盖松花江流域、辽河流域、黄河流域、长江流域以及珠江流域,结果表明,饮用水厂出水中 NAs 的浓度为 0.4~153.2 ng·L⁻¹(中位值为 9.95 ng·L⁻¹),其中 NDMA 在大部分出水水样中检出,浓度为 0.9~40.8 ng·L⁻¹,在饮用水厂出水中平均浓度为 11 ng·L⁻¹,龙头水中平均浓度为 13 ng·L⁻¹。其中,长江三角洲地区 NAs 含量最高,饮用水厂出水和龙头水 NDMA 的平均浓度分别为 27 和 28.5 ng·L^{-1[28]}。另外,市场上售卖的瓶装水也能检测到 NDMA 和 N-亚硝基吗啉(NMOR),其中 NMOR 检出率为 25%,平均浓度 16 ng·L^{-1[33]}。

	表 3	中国部分地区饮用	日水宫氮消每副产	初浓度水平				
Table 3	Occurrence of nitroge	enous disinfection	n by-products in	drinking	water	distributed	in	China

		0	J .	υ υ υ										
	调查地区 Region	调查时间	消毒副产物(DBPs) Disinfection)	浓度水平/(µg·L ⁻¹)		参考文献							
调查城市 说 City				水样类型	Concentratio									
		Time		Types of samples	最高值	中位值	References							
			by products (DBF3	<i>י</i>	Maximum	Median								
	化东地区	2008	DCAcAm	饮用水厂出水	2.9	—								
—	Fastern China		DCAN	Finished water	6.3	_	[17]							
	Eustern China		TCNM		1.0	_								
			DCAcAm		2.0	1.1								
1.34	$\nu \rightarrow a$		DCAN	お田と口山と	6.3	1.8								
上母	太二用 Vanatas Bissa Dalta	2008-2009	BCAN	饮用水) 出水 Einished sustan	3.5	2.4	[18]							
Snangnai	Yangize River Delta		DBAN	Finished water	2.7	1.4								
			TCNM		0.9	0.5								
-			TCAN		5.1	0.1								
北京	华北地区 North China	2010	DCAN	饮用水厂出水	饮用水厂出水 3.4									
Beijing			BCAN	Finished water	3.8	0.9	[19]							
			DBAN		4.7	0.9								
31 个城市	全国大部分地区		HANs	饮用水厂出水	39.2	1.11								
31 cities	Cities across China	2010—2011	HNMs	Finished water	0.96	0.05	[20]							
广州、佛山、珠海 Guangzhou	珠三角	2011-2012	HANs	饮用水厂出水	5.3	1.8	[21]							
Foshan, Zhuhai	Pearl River Delta	Pearl River Delta	Pearl River Delta	' Pearl River Delta	Pearl River Delta	Pearl River Delta	Pearl River Delta	Pearl River Delta Zhuhai	2011 2012	TCNM	Finished water	1.2	0.2	[21]
涇圳	珠三角		HANs	管网水	6.4	2.0								
小可 Shenzhen	珠二用 Pearl River Delta	2015		Water from drinking			[22]							
Shenzhen			HAcAms water distribution s		3.1	1.5								
	_	— 2012	HAcAms	饮用水厂出水	8.2	_	[23]							
				Finished water			[-]							
金华	长三角	2015-2016	HANs	水龙头出水	7.6	2.2	[24]							
Jinhua	Yangtze River Delta	2013 2010	HNMs	Tap water	2.9	0.7	[² 7]							
农村	华东地区	2019	HANs	饮用水厂出水和水龙头水	26.9	4.0	[25]							
Rural area	Eastern China	2018	TCNM	Finished water and tap wate	r 0.2	_	[23]							

调查城市 City	调查地区 Region	调查时间 Time	DBPs	水样类型 Types of samples	浓度水平/(ng·L ⁻¹) Concentration/(ng·L ⁻¹)	参考文献 References
_	华南	2009	NDMA	水源水 Source water	4.7 ~ 15.1	[34]
	South China			饮用水厂出水 Finished water	4.68 ~46.9	
	AK-IK		NDMA	御田水厂山水	21.2(最高值 Maximum)	
—	부고 North China	—	NMOR	以用水) 西水 Finished water	9.0(最高值 Maximum)	[35]
	Norui Ciillia		NPYR	rinished water	10.8(最高值 Maximum)	
				水源水	ND - 424	
			NAc	Source water	ND ~ 42.4	[36]
			INAS	饮用水厂出水	ND 26.2	
		2010		Finished water	$ND \sim 20.5$	
			NDMA NDEA	水源水	ND 12.0	
	_			Source water	ND~13.9	
—				饮用水厂出水		
				Finished water	ND ~ 20.5	
				水源水	ND 16.2	
				Source water	ND ~ 16.3	
				饮用水厂出水		
				Finished water	ND ~ 14.0	
河南省某市	华中			はてよ		
A city in Henan	Central	2010-2011	NAs	地下小 Groundwater	ND ~ 101.0	[30]
Province	China			Groundwater		
			NAs	河流水源水	16-624	
				River water	1.0 ~ 02.4	
古林、松原、哈尔浜、 (++町 日)江				地下水	ND 60.8	
佳木斯、问江	东北	2014		Groundwater	$ND \sim 00.8$	[27]
Jilin, Songyuan,	Northeast of China	2014	NDMA	河流水源水	0.0 22.0	[37]
and Tongijang				River water	$0.8 \sim 32.0$	
and rongjiang				地下水	0 (10 0	
				Groundwater	0.6 ~ 18.0	
_	台湾 Taiwan, China	2015—2016	NDMA	饮用水厂出水 Finished water	ND~16.3	[38]

表4 中国部分地区饮用水中亚硝胺类消毒副产物存在浓度水平

Table 4 Occurrence of N-nitrosamines in drinking water distributed in Chin

注:NMOR 表示 N-亚硝基吗啉, NAs 表示 N-亚硝胺; "ND"表示由于低于检测限而无法检出。 Note: NMOR stands for N-nitrosomorpholine; NAs stands for N-nitrosoamines; ND means no detection.

2 含氮消毒副产物的生成机制(Formation mechanism of N-DBPs)

2.1 卤乙腈的生成机制

图 1 为 HANs 的主要生成机制。目前对于 HANs 的生成路径主要基于以氨基酸和脂肪族伯胺 作为前体物的研究,主要有 2 种生成途径:"脱羧途 径"和"醛途径"。以氨基酸为例,"脱羧途径"第一 步是消毒剂(氯或氯胺)中的氯取代氨基上的氢^[39]。 氯原子取代数量与取决于氨基酸与消毒剂的摩尔比例,当游离氯/氨基酸(摩尔比例)>1时,更倾向于生成二氯代中间产物。氯代产物接着会发生脱 HCl和脱羧反应,生成碳氮双键化合物(R—CH = NH或 R—CH = NCl),此反应是限速步骤^[39]。虽然胺类化合物由于没有羧基并无发生脱羧反应,但是生成路径与"脱羧途径"是高度一致的。"脱羧途径"中HANs的氮来自于含氮前体物。

另外,碳氮双键化合物还可以进一步水解生成 醛类物质(R—CHO),通过"醛途径"生成 HANs。同 时 R—CH == NCI 可以通过脱掉 HCI 生成腈类物 质,这些腈类物质将通过一系列反应生成常见的 HANs。"醛途径"的发现说明醛类物质也是重要的 HANs 前体物,不含氮的有机物也可以通过"醛途 径"生成 HANs。不同于"脱羧途径",通过"醛途 径"生成的 HANs 中的氮来源于氯胺,这说明使用 氯胺作为消毒剂可能提高 HANs 的生成。HANs 生 成途径中的部分重要中间产物已被检出并得到确 认,如 Yang 等^[40]通过 LC/MS 检测到氨基酸与一氯胺 反应的一氯代氨基酸(图 1A,红色方框内物质 a)和醛 类中间产物(图 1A,红色方框内物质 b)以及碳氮双键 中间产物腈类物质(图 1A,红色方框内物质 c)。

在消毒过程中,以上2条路径可能同时进行,但 在不同的反应体系和反应条件下,其中一条是主要 路径。谷氨酸、色氨酸和 Suwannee 河的天然有机物 与¹⁵NH₂Cl反应,生成的 DCAN 中 N 元素大部分(> 70%)来自 NH₂Cl,说明"醛途径"在反应体系中的重 要性,但胞嘧啶与氯胺反应结果则是相反的,此反应 中"脱羧途径"是 HANs 的主要生成路径^[40]。另一 研究发现,在酪氨酸、天冬酰胺、天冬氨酸和甲基吡 咯与 NH₂Cl反应体系中,"醛途径"是生成 HANs 的 主要路径,而吡咯与 NH₂Cl 反应则是以"脱羧途径" 为主^[41]。Yang 等^[42]将实际水体中的溶解性有机物 分离成4个部分(亲水性酸性、疏水性中性、疏水性 碱性和亲水性非碱性部分),分别与¹⁵NH₂Cl 反应,结 果表明,¹⁵N-DCAN 是疏水部分生成的主要 DCAN,¹⁴N-DCAN 是亲水部分生成的主要 DCAN, 说明相比于疏水性前体物,亲水性前体物更倾向于 通过"脱羧途径"反应生成 DCAN。另外,最近发表 的一篇文章报道了在实际水样消毒中,"醛途径"是 生成 DCAN 的主要途径^[43]。

2.2 卤代硝基甲烷的生成机制

HNMs 在我国饮用水中的存在浓度很低,最高 值在几 ng·L⁻¹水平(表 3),水中普遍存在的氨基酸、 氨基糖、伯胺和核酸等有机物氯化后 HNMs 生成量 也很低^[44-45]。但硝基甲烷、3-硝基苯酚在氯化消毒 中的 TCNM 产率却非常高,分别为 45% 和 53%, 说明硝基化合物是 HNMs 的重要前体物^[9]。目前 主要以氨基酸和伯胺作为前体物探索 TCNM 的生 成途径,如图 1 所示。以伯胺和氨基酸为例,氯或 氯胺将氮源有机物的氨基(—NH₂)氧化成硝基(— NO₂),然后通过一系列反应生成 TCNM,但目前还 没有文献给出具体的氧化过程以及硝基化合物转化 成 TCNM 的过程。用¹⁵N 标记的 NH₂CI 与天然有

图 1 HANs 和 HNMs 生成路径^[39-41,43]

Fig. 1 Formation pathways for HANs and HNMs^[39-41,43]

机物(NOM)反应,探索生成的 TCNM 中 N 来源,结 果表明绝大部分 TCNM 的 N 来自于 NOM 而不是 NH₂Cl^[42],说明此途径是 TCNM 生成的主要途径。 另外,氯化中间物碳氮双键化合物也可能参与 TC-NM 生成。氯化中间物中碳氮双键(C = N)被活性 氯氧化,其产物通过脱 HCl 形成碳碳双键(C = C)并 进一步被氯氧化,经过一系列消除、氧化和去质子反 应,并把 RCHO 脱去,形成了 CHCl₂N(OH)Cl,最后 转化为 TCNM。

一般而言,氯化消毒的 TCNM 生成量高于氯胺 消毒^[46],水中溶解性有机碳(DOC)和溶解性有机氮 (DON)比值(DOC/DON 值)与 HNMs 生成量成正 比^[47-48]。臭氧预氧化能显著提高 HNMs 的生成 量^[47-49]。对于臭氧在 TCNM 生成过程中的作用,研 究认为臭氧的强氧化性能将伯胺上的氨基(--NH2) 氧化成硝基(-NO2)^[10]。另外,亚硝酸盐(NO2)能影 响 TCNM 在氯/氯胺消毒中的生成量。Song 等^[48]的 研究表明,无论是在氯化消毒、氯胺消毒还是在臭氧 预氧化后氯/氯胺消毒中,NO2 都没有提高 HNMs 的生成量。但另有研究表明 NO2 会增加 HNMs 生 成^[46,50-51]。其中, Hong 等^[51]研究发现, NO₂ 对 TC-NM 生成的促进率(mmol TCNM/mmol C)与比紫外 吸光度(SUVA 值)呈正相关关系(r²=0.60),并提出 NO₂在 SUVA 值高的水中会促进氯化过程中 HNMs 形成。实际上,NO;通过氯化反应生成 CINO,, CINO₂ 与 NO₂ 生成 N₂O₄, N₂O₄ 将一些化合物硝 化,成为 HNMs 的重要前体物——硝基化合物^[52]。 有机物的硝基化是亲电取代过程,芳香化合物由于 电子密度高,更容易成为硝化剂的攻击对象,而 SU-VA 值是水体中芳香化合物含量的指标,这就解释 了为什么 NO2 对 TCNM 生成的影响与 SUVA 值有 相关性^[51]。NO2 普遍存在于各种水体中,当水处理 厂的工艺含臭氧消毒时,NO;和O,对HNMs生成 的促进作用是同时存在的^[52]。

另外,当水中含有硝酸盐(NO₃)时,采用中压紫 外灯(MP UV)紫外照射后再进行氯化消毒的 TCNM 产量显著高于单独氯化消毒,并且 TCNM 生成量随 着 NO₃ 浓度增加或 UV 照射剂量的增加而增加^[53], 这表明 MP UV 辐照 NO₃ 会促进一些有机物转化成 TCNM 前体物。对含有 NO₂ 的水体采用 MP UV 和 氯联用或预氯化后 MP UV 照射消毒也发现 TCNM 增大的现象,但采用低压汞灯(LP UV)却不会促进 TCNM 的生成^[54]。其原因为 MP UV 发射波长与 NO₃⁻ 和 NO₂⁻ 的吸收波长有重叠, MP UV 照射使 NO₃⁻ 和 NO₂⁻ 光解生成 NO₂[•],并经过一系列反应生 成 N₂O₄ 和 ONOO⁻, NO₂[•], N₂O₄ 和 ONOO⁻都是硝 化剂, 如上所述这些硝化剂能将水中某些有机物(特 別是芳香性基团)硝基化, 成为 HNMs 的前体物, 从 而增加 HNMs 的生成^[54-55]。

2.3 卤代乙酰胺的生成机制

HAcAms 的生成路径如图 2 所示。碱性条件 下,HANs 可以直接水解生成对应的 HAcAms,其生 成路径如图 2A 所示^[56]。另外, HANs 与 OCI⁻发生 亲核加成反应,生成中间产物 N-Cl-HAcAms^[57],其 分子上的 N---Cl 键容易被淬灭剂还原,生成对应的 HAcAms^[43],其中 HANs 与 OH⁻和 OCI⁻的二级反应 速率常数分别为 6.85×10² 和 5.6×10³(mol·L⁻¹)⁻¹· h^{-1[58]}。另外, HAcAms 还有其他独立的生成途 径^[43,59-60]。Huang 等^[59]对饮用水、污水出水、藻的胞 外聚合物、NOM 和氨基酸等多个水样进行氯化消 毒和氯胺化消毒,发现氯化消毒中 DCAN 生成量高 于 DCAcAm,但是在氯胺消毒后 DCAcAm 浓度高 于 DCAN,表明氯胺消毒中存在 HAcAms 的其他生 成途径。而以天冬酰胺为模型前体物的实验结果也 表明, DCAcAm 的形成可以不经过生成 HANs 中间 体,如图2B所示。

醛类(HANs 转化生成的醛和卤乙醛等)也是 HAcAms 的重要前体物。研究者以常见的氯乙醛和 二氯乙醛为前体物,探究 HAcAms 生成的路径,如 图 2C 所示。醛与一氯胺快速反应达到平衡,生成 甲醇胺类物质,该物质通过2个反应生成 HAcAms: (1)通过缓慢脱水形成碳氮双键(C=N),接着脱 HCl 形成腈类物质,最后转化为 HAcAms;(2)被 NH,Cl 氧化生成 N-Cl-HAcAms, 进而被淬灭剂还原为 HAcAms。其中, N-Cl-HAcAms 被认为是一类 N-DBPs,并且具有很长的半衰期^[57]。目前, N-Cl-DCAcAm、N-Cl-BCAcAm 和 N-Cl-DBAcAm 已在美 国的水龙头水中被检出,浓度均在 μg·L⁻¹水平。据 报道,N-Cl-DCAcAm的细胞毒性(LC₅₀ = 2.56×10⁻⁴ $mol \cdot L^{-1}$)比 DCAcAm(LC₅₀ = 1.92×10⁻³ mol · L⁻¹)和 $TCAcAm(LC_{50} = 2.05 \times 10^{-3} mol \cdot L^{-1})还要高^{[61]}, 而$ N-Cl-TCAcAm 的细胞毒性(LC₅₀ = 3.90×10⁻⁴ mol· L⁻¹)也高于 DCAcAm 和 TCAcAm^[43]。由于 N-Cl-HAcAms 比较稳定,在饮用水中广泛存在并且具有 高风险,它们可能对饮用水消费者构成更大的健康 威胁,值得重点关注。

另外,常用的混凝剂聚丙烯酰胺(PAM)虽然能 有效降低水中有机物浓度、提高絮凝效率,但促进了 HAcAms的生成^[62],研究表明其单体丙烯酰胺是 HAcAms的重要前体物^[63]。丙烯酰胺生成 HAcAms 的路径包括:(1)通过一系列反应生成 HANs,HANs 水解生成 HAcAms;(2)经过游离氯加成和取代反应 直接生成 HAcAms^[62]。酰胺氯化或氯胺化生成 HAcAms的速率很慢,而醛与氯胺反应生成 HAcAms 则是比较快^[64]。除了上述 HAcAms 生成途径,柠檬 酸^[60]和芳香性物质间苯二酚^[65]、4-羟基苯甲酸^[66]等生 成 HAcAms 的路径也被报道。柠檬酸先与氯或氯胺 反应生成二氯乙酰氯或三氯乙酰氯,然后进一步生成 二氯乙酰胺或三氯乙酰胺,这一步需要氯胺的参与。

水中含氮有机物、氨氮和氯胺消毒剂都是 HAcAms的潜在来源。在HAcAms生成途径中, HANs水解生成HAcAms和醛类转化为HAcAms, 氯胺是HAcAms的N的来源。上述提及的醛、柠檬 酸、间苯二酚和4-羟基苯甲酸等模型前体物本身是 不含氮的,因此生成的HAcAms中N也是来源于参 与反应的氯胺。通过对HAcAms中N来源的探索, 我们可以大概推测出HAcAms的重要生成路径,从 而为HAcAms的控制提供理论依据,但目前这类研 究还比较少。用¹⁵NH₂CI对饮用水进行消毒处理发 现,¹⁵N-DCAcAm占比超过50%,"醛途径"是生成 DCAcAm 的主要途径^[43]。另外,研究表明 HAcAms 生成量与水中 DON 含量有相关关系,DON 含量越 高,HAcAms 生成量越大。其中,溶解性有机物中亲 水性酸的 HAcAms 的生成潜能最大,推测类蛋白物 质可能是 HAcAms 的前体物^[67]。但是相比于游离 氨基酸,抗生素氯霉素及其类似物的 HAcAms 生成 潜能更高^[68]。

2.4 亚硝胺类消毒副产物的生成机制

图 3 总结了 NAs 的生成机制。目前研究主要 集中于分析 NDMA 的生成路径,其中氯胺消毒是 NAs 生成的最主要途径(图 3A)。NH₂Cl 与有机胺 前体物(如二甲胺)反应生成中间产物非对称二甲肼 (UDMH),UDMH 经过 NH₂Cl 氧化形成 ND-MA^[69-70]。另外,二氯胺与有机胺反应生成的 ND-MA 远高于一氯胺,氯胺消毒中生成的 NDMA 大部 分是通过 NHCl₂反应生成的^[71]。NHCl₂ 与二甲胺 (DMA)通过亲核取代反应生成氯代非对称二甲肼 (Cl-UDMH),该反应速率常数比 NH₂Cl 与 DMA 生 成 UDMH 的速率常数快 3 个数量级,Cl-UDMH 可 进一步与溶解氧反应生成 NDMA,也可与 NHCl₂反 应生成其他产物,两者形成竞争反应,但与溶解氧的 反应略快^[72]。氯胺消毒中 NDMA 的生成量与 pH 显著相关。低 pH 能促进 NH₂Cl 向 NHCl₂ 的转化, 并在随后 pH 上升过程中增加 NDMA 的生成^[73]。 除了 DMA 等仲胺前体物, 叔胺和季胺也是亚硝胺 的重要前体物。DMA 在氯胺消毒中的 NDMA 产率 仅为 0.5% ~2.7%, 而含叔胺基的雷尼替丁的 ND-MA 产率高达 62.9% ~89.9%^[9]。一般而言, 叔胺和 季胺在氯或氯胺消毒中转化为伯胺,并进一步通过 上述反应途径生成 NAs, 但某些含叔胺官能团的物 质(如药品雷尼替丁)可以不通过生成伯胺中间产物 直接生成 NAs^[74]。研究表明, NH₂Cl 氧化有机胺生 成的氨基自由基以及与 O₂ 反应产生的 N-过氧自由 基, 也参与了伯胺和叔胺物质生成 NDMA 的反 应^[75]。另外, 溴离子(Br⁻)能促进 NDMA 的生成, 因 为 Br⁻与 NH₂Cl 反应生成溴代氧化剂(如 NHBrCl)和 中间产物溴代非对称二甲肼(Br-UDMH), 但是这种促 进作用主要在 pH 在 8 和 9 的弱碱性环境发生^[76-77]。

NO₂ 在 NDMA 的生成中起着重要作用。在氯 化消毒中,游离氯与 NO₂ 反应生成 CINO₂,并进一 步生成 N₂O₄, N₂O₄ 作为亚硝化剂和 DMA 反应直 接生成 NDMA, 但 经 此 途 径 生 成 的 NDMA(~ 0.0007%)明显少于氯胺途径(~0.05%)(图 3B)^[52]。 酸性条件下, NO₂ 能酸化生成 NO⁺或 N₂O₃,可作为 亚硝化剂和 DMA 反应直接生成 NDMA(图 3B),这 是 NO₂ 含量高的食物中生成 NDMA 的主要途径, 但在水处理中较少出现^[74]。臭氧消毒中 DMA 转化 为 NDMA 的比率很低(<0.6%)^[78],由此认为臭氧引 发的亚硝化途径贡献不大^[79]。但臭氧会促进某些化 合物转化为 NDMA,如 UDMH 在臭氧氧化中的 NDMA 转化率高达 80%, N, N-二甲基氨基磺酸 (DMS)的 NDMA 转化率为 52%,这表明臭氧氧化在 NDMA 的生成中的作用也是不容忽视的^[80]。在中性 和碱性条件下,臭氧氧化过程中 NAs 生成途径有 2 种:(1)通过亚硝化途径, NO₂ 的氧化产物 N₂O₄ 作为 亚硝化剂(图 3B);(2)仲胺前驱体与羟胺(NH₂OH)反应 生成 UDMH,进一步氧化生成相应的 NAs(图 3C)^[81]。

3 含氮消毒副产物的毒性作用(Toxic effects of N-DBPs)

3.1 含氮消毒副产物的毒理效应

研究表明, HANs 的毒性作用远高于 THMs 和 HAAs^[82]。部分 HANs 对大肠杆菌 PQ 37 造成 DNA 损伤, 对伤寒沙门氏菌株 TA 100 产生致突变作 用^[83-84]。其中, DCAN 对水生动物斑马鱼具有胚胎 发育毒性, DCAN 暴露能降低斑马鱼孵化率, 增加 畸形率和死胎率, 同时 DCAN 能引起斑马鱼心脏功 能改变、神经元功能紊乱和 DNA 损伤, 并易于在成 年斑马鱼体内积累^[85]。HANs 对细胞代谢也有不良 影响, 研究表明大鼠胶质瘤细胞(C6 细胞)暴露于 DBAN 可导致活性氧簇(ROS)的产生、氧化蛋白的 累积和蛋白酶体活性的抑制^[86]。在暴露于 HANs 的 人肝癌细胞(HepG 2)中也发现 ROS 浓度的上升, 同 时还发现 DNA 损伤^[87]。对于中国仓鼠卵巢细胞 (CHO 细胞), 7种 HANs 均具有慢性细胞毒性和急性

图 3 NDMA 生成途径^[52,74] Fig. 3 Formation pathways for NDMA^[52,74] 遗传毒性,其中 DBAN 细胞毒性最强,碘乙腈 (IAN)基因毒性最强,饮用水浓度水平较高的 TCAN 和 DCAN 在细胞毒性和基因毒性中略低于其他 HANs^[7]。

HNMs 对哺乳动物表现出很高的细胞毒性和基 因毒性^[88-89]。CHO 细胞实验表明,9 种 HNMs 的慢 性细胞毒性(暴露 72 h)由高到低分别为:二溴硝基 甲烷(DBNM)>二溴一氯硝基甲烷(DBCNM)>一溴硝 基甲烷(BNM)>三溴硝基甲烷(TBNM)>一溴二氯硝 基甲烷(BDCNM)>一溴一氯硝基甲烷(BCNM)>二氯 硝基甲烷(DCNM)>一氯硝基甲烷(CNM)>TCNM;诱 导 CHO 细胞基因组 DNA 损伤程度为:DBNM>BD-CNM>TBNM>TCNM>BNM>DBCNM>BCNM>DC-NM>CNM。对于人体细胞,TCNM 和 BNM 的遗传 毒性也是非常高的^[90]。另外,体内毒性实验表明, HNMs 暴露能损伤小鼠肝脏抗氧化防御系统,引起 小鼠肝相对重量下降,同时核磁共振代谢组学分析 发现,HNMs 暴露对小鼠体内氨基酸代谢和碳水化 合物代谢有干扰作用^[91]。虽然 HNMs 对沙门氏菌 具有较弱的致突变性[92-94],但其致突变作用还是远 高于卤代甲烷,这可能与 HNMs 中的硝基基团有 关;且在9种HNMs中,BCNM 致突变性最强^[93]。 总体而言,溴代硝基甲烷的毒性高于氯代硝基甲烷。

HAcAms 的综合毒性仅次于 HANs,高于 THMs 和 HAAs^[82]。大鼠肾脏细胞(NRK-52^E)毒性测试结 果表明, DCAcAm 对 NRK 细胞的慢性细胞毒性和 急性遗传毒性明显高于二氯甲烷(DCM)^[95]。对于 CHO 细胞,13 种 HAcAms 均具有细胞毒性,其中细 胞毒性从高到低分别为:二碘乙酰胺(DIAcAm)>一 碘乙酰胺(IAcAm)>一溴乙酰胺(BAcAm)>三溴乙酰 胺(TBAcAm)>一溴一碘乙酰胺(BIAcAm)>二溴一氯 乙酰胺(DBCAcAm)>一氯一碘乙酰胺(CIAcAm)>一 溴二氯乙酰胺(BDCAcAm)>DBAcAm>一溴一氯乙 酰胺(BCAcAm)>一氯乙酰胺(CAcAm)> DCAcAm> TCAcAm;除了 DCAcAm 外,其他 12 种 HAcAms 均 具有基因毒性,基因毒性从高到低分别为:TBAcAm >DIAcAm ~ IAcAm>BAcAm>DBCAcAm>BIAcAm> BDCAcAm>CIAcAm>BCAcAm>DBAcAm>CAcAm >TCAcAm。总体而言,碘代乙酰胺(I-HAcAms)的细 胞毒性和遗传毒性比溴代乙酰胺(Br-HAcAms)或氯 代乙酰胺(Cl-HAcAms)高1~2个数量级^[96]。在氯 代乙酰胺中,CAcAm 对 NRK 细胞的细胞毒性和基 因毒性均显著高于 DCAcAm 和 TCAcAm^[97]。最近,

有文献报道了 HAcAms 对人胃上皮 GES-1 细胞和 永生化角质形成细胞(immortalized human keratinocytes, HaCaT)产生细胞毒性作用。其中, HAcAms 对 GES-1 细胞和 HaCaT 细胞造成细胞毒性的最低 浓度分别为 $5 \times 10^{-7} \sim 2.5 \times 10^{-3}$ mol·L⁻¹和 2.5×10^{-7} ~ 6.25×10^{-4} mol·L⁻¹, 细胞毒性远高于三氯甲烷 (TCM),且 HaCaT 细胞对于 HAcAms 的敏感性高于 GES-1 细胞^[98]。

NDMA 对多种细胞(大鼠肝细胞、胰腺细胞和人淋巴母细胞)和细菌(沙门氏菌和大肠杆菌等)均具有基因毒性,具体表现为 DNA 损伤、修复、断裂以及基因和染色体突变;用多种模式生物(大鼠、小鼠和人体肝脏等)进行的体内毒性实验结果也证实,NDMA 对哺乳动物具有基因毒性^[84]。同时,NDMA 还具有生殖发育毒性,NDMA 可以通过胎盘从母体转移至胚胎,影响胚胎发育^[99],导致怀孕小鼠出现死产和新生小鼠死亡^[100]。除此以外,NDMA 还是一种肝毒素,同时也是致癌物,能诱发肝纤维化和肝硬化,可诱发小鼠肝血管肉瘤、肝细胞癌和肺肿瘤等^[101]。

由于模式生物、毒性终点的不同,同一物质的毒 性测试结果可能不一致^[102-103],因此,根据不同毒性 分析得出的结果,我们无法对不同类别 DBPs 的毒 性进行对比分析。采用一套基因毒性分析方法,以 相同的方式对各种化学类别的所有 DBPs 进行系统 性评估的研究还很少。CHO 细胞是 DBPs 毒理学 研究最常用的模式生物,其中 N-DBPs 的 CHO 细胞 毒性试验结果如表 5 所示^[89]。

3.2 消毒副产物的毒性机制

目前,关于 N-DBPs 致毒机理的研究较少。有研究表明,HANs 在体内的代谢可通过非氧化途径和氧化途径生成羟基乙腈,羟基乙腈进一步释放CN⁻,同时生成卤代醛类和卤代酮类化合物,这些中间代谢产物可与蛋白质、DNA 和脂肪等反应,导致细胞毒性和基因毒性等损伤效应^[104]。同时,HANs会抑制谷胱甘肽 S-转移酶的活性,抑制其解毒功能^[104]。同时,HANs引起氧化应激增强,降低机体的修复能力,造成一些器官和组织氧化损伤,引发HANs的基因毒性^[104]。HNMs能诱导 AT 碱基取代GC 碱基,引起基因毒性^[104]。Schneider 等^[92]指出,TCNM 本身并不是致突变物质,而其在代谢中与谷胱甘肽(GSH)反应的产物具有致突变性。另外,HNMs 通过氧化应激诱导引起嘌呤和嘧啶氧化损伤,是一种重要的 HNMs 的致毒机制^[90-91]。

表 5 含氮消毒副产物(N-DBPs)的 CHO 慢性细胞毒性和单细胞凝胶电泳(SCGE)遗传毒性试验分析结果汇总^[89] Table 5 Summary of nitrogenous disinfection byproducts (N-DBPs) toxicity analyzed with the CHO chronic

cytotoxicity assay and the CHO single cell gel electrophoresis (SCGE) genotoxicity assay^[89]

		引起细胞毒性		引起遗传毒性的	引起 50% 彗尾 DNA 或
消毒副产物	英文名称及缩写	们取队队及	CHO I C	取队低度 $((mal, I^{-1}))$	DNA 尾龙丁直的孤反
Disinfection	English name and	(more)	$(mol \cdot I^{-1})$	Lowest genotoxicity	50% Tail DNA or
by-product	abbreviation	concentration	/(1101-12)	concentration	Midpoint of tail
		$/(\text{mol}\cdot\text{L}^{-1})$		$/(\text{mol} \cdot L^{-1})$	moment/(mol·L ⁻¹)
卤乙腈	Haloacetonitriles (HANs)	. ,		· · · · ·	· · · · · · · · · · · · · · · · · · ·
一溴乙腈	Bromoacetonitrile (BAN)	1.0×10^{-6}	3.21×10 ⁻⁶	4.0×10^{-5}	3.85×10 ⁻⁵
一氯乙腈	Chloroacetonitrile (CAN)	5.0×10 ⁻⁵	6.83×10 ⁻⁵	2.5×10 ⁻⁵	6.01×10 ⁻⁴
一碘乙腈	Iodoacetonitrile (IAN)	1.0×10^{-7}	3.30×10 ⁻⁶	3.0×10^{-5}	3.71×10 ⁻⁵
二溴乙腈	Dibromoacetonitrile (DBAN)	1.0×10^{-6}	2.85×10 ⁻⁶	3.0×10 ⁻⁵	4.71×10 ⁻⁵
二氯乙腈	Dichloroacetonitrile (DCAN)	1.0×10^{-5}	5.73×10 ⁻⁵	2.4×10^{-3}	2.75×10 ⁻³
溴氯乙腈	Bromochloroacetonitrile (BCAN)	7.0×10^{-6}	8.46×10 ⁻⁶	2.5×10^{-4}	3.24×10 ⁻⁴
三氯乙腈	Trichloroacetonitrile (TCAN)	2.5×10 ⁻⁵	1.6×10 ⁻⁴	1.0×10^{-3}	1.01×10^{-3}
卤代硝基甲烷	Halonitromethanes (HNMs)				
一溴硝基甲烷	Bromonitromethane (BNM)	NA	7.08×10 ⁻⁶	NA	1.36×10 ⁻⁴
一氯硝基甲烷	Chloronitromethane (CNM)	NA	5.29×10 ⁻⁴	NA	2.15×10 ⁻³
二溴硝基甲烷	Dibromonitromethane (DBNM)	NA	6.09×10 ⁻⁶	NA	2.62×10 ⁻⁵
二氯硝基甲烷	Dichloronitromethane (DCNM)	NA	3.73×10 ⁻⁴	NA	4.21×10 ⁻⁴
溴氯硝基甲烷	Bromochloronitromethane (BCNM)	NA	4.05×10^{-5}	NA	1.65×10^{-4}
三溴硝基甲烷	Tribromonitromethane (TBNM)	NA	8.57×10 ⁻⁶	NA	6.99×10 ⁻⁵
三氯硝基甲烷	Trichloronitromethane (TCNM)	NA	5.36×10 ⁻⁴	NA	9.34×10 ⁻⁵
一溴二氯硝基甲烷	Bromodichloronitromethane (BDCNM)	NA	1.32×10 ⁻⁵	NA	6.32×10 ⁻⁵
二溴一氯硝基甲烷	Dibromochloronitromethane (DBCNM)	NA	6.88×10 ⁻⁶	NA	1.43×10 ⁻⁴
卤代乙酰胺	Haloacetamides (HAcAms)				
一溴乙酰胺	Bromoacetamide (BAcAm)	5.0×10 ⁻⁷	1.89×10^{-6}	2.5×10^{-5}	3.68×10 ⁻⁵
一氯乙酰胺	Chloroacetamide (CAcAm)	7.5×10^{-5}	1.48×10^{-4}	7.5×10^{-4}	1.38×10^{-3}
一碘乙酰胺	Iodoacetamide (IAcAm)	5.0×10 ⁻⁷	1.42×10^{-6}	3.0×10^{-5}	3.41×10 ⁻⁵
二溴乙酰胺	Dibromoacetamide (DBAcAm)	2.5×10^{-6}	1.22×10^{-5}	5.0×10^{-4}	7.44×10 ⁻⁴
二氯乙酰胺	Dichloroacetamide (DCAcAm)	8.0×10^{-4}	1.92×10^{-3}	NS	NA
二碘乙酰胺	Diiodoacetamide (DIAcAm)	2.5×10^{-8}	6.78×10 ⁻⁷	2.5×10^{-5}	3.39×10 ⁻⁵
溴碘乙酰胺	Bromoiodoacetamide (BIAcAm)	2.0×10^{-6}	3.81×10^{-6}	2.5×10^{-5}	7.21×10 ⁻⁵
氯碘乙酰胺	Chloroiodoacetamide (CIAcAm)	2.0×10^{-6}	5.97×10 ⁻⁶	2.0×10^{-4}	3.02×10 ⁻⁴
溴氯乙酰胺	Bromochloroacetamide (BCAcAm)	1.0×10^{-6}	1.71×10^{-5}	4.0×10^{-4}	5.83×10 ⁻⁴
二溴一氯乙酰胺	Dibromochloroacetamide (DBCAcAm)	1.0×10^{-6}	4.75×10 ⁻⁶	2.5×10^{-5}	6.94×10 ⁻⁵
一溴二氯乙酰胺	Bromodichloroacetamide (BDCAcAm)	2.0×10^{-6}	8.68×10 ⁻⁶	7.5×10^{-5}	1.46×10^{-4}
三溴乙酰胺	Tribromoacetamide (TBAcAm)	2.0×10^{-6}	3.14×10^{-6}	3.0×10^{-5}	3.25×10 ⁻⁵
三氯乙酰胺	Trichloroacetamide (TCAcAm)	5.0×10^{-4}	2.05×10 ⁻³	5.0×10^{-3}	6.54×10 ⁻³
亚硝胺	N-Nitrosamines (NAs)				
N-二甲基亚硝胺	N-nitrosodimethylamine (NDMA)	NS	NA	NA	2.39×10 ⁻³
N-亚硝基吗啉	N-nitrosomorpholine (NMOR)	NA	1.1×10^{-2}	NA	5.22×10 ⁻²

注:"NS"表示与负控制组相比没有统计学意义;"NA"表示暂无数据。

Note: NS means not statistically significant against the negative control; NA means not applicable or data not available.

HAcAm 的毒性机制研究是以 TCAcAm 为代 表,TCAcAm 与羰基碳发生亲电反应并生成亲电二 卤代碳离子,在还原脱卤过程中产生具有遗传毒性 的自由基,这是 TCAcAm 引发 CHO 基因毒性的机 制之一。同时,谷胱甘肽 S-转移酶 T1-1(GSTT1-1) 可能激活 TCAcAm 使其转化为具有遗传毒性的中 间体,从而对 CHO 细胞产生基因毒性^[84]。另有研 究表明, IAcAm 是一种醇酸剂, 可诱导肾上皮细胞 内葡萄糖调节蛋白和热休克蛋白的合成,并通过引 起内质网应激反应导致细胞坏死[105]。最新研究表 明,由 ROS 引起的氧化应激和细胞凋亡是碘代乙酰 胺细胞毒性的重要机制。不同的碘代乙酰胺引起细 胞凋亡的路径并不相同, BIAcAm 和 CIAcAm 是通 过线粒体途径引起细胞凋亡,而 DIAcAm 和 IAcAm 既能通过氧化应激途径又能通过线粒体途径引起细 胞凋亡[106]。

NDMA 的毒性作用并不是自身引起的,而是 NDMA 的代谢产物引起的^[101]。NDMA 经肝脏微 粒体混合功能氧化酶代谢后转化为烷基化(甲基 化)剂,导致 DNA、RNA 和蛋白质分子的烷基化。 其致毒作用机制通常包括 3 个生物学过程:(1) NDMA 在靶器官或组织中代谢活化生成烷基化阳 离子;(2)DNA 烷基化造成遗传损伤并诱导修复; (3)DNA 修复无效导致基因突变及细胞恶性转化。 除此以外,NDMA 可通过氮自由基(RNS)和氧自 由基引起 DNA 氧化损伤和蛋白氧化,导致肿瘤 形成^[107]。

4 结语(Conclusions)

消毒过程中生成的高毒性 N-DBPs 已经成为影 响我国饮用水供水安全的主要问题之一。研究人员 对各种 N-DBPs 的存在水平、生成机制进行了深入 探讨,并研究了 N-DBPs 生成的影响因素。但是,N-DBPs 的毒性效应及致毒机制尚未明确,现有方法 不能综合反映出 N-DBPs 对人体的损伤程度,相关 体内研究和人群资料较少。同时,多种 N-DBPs 共 存时对人体的毒性效应研究有待开展。基于细胞毒 性、遗传毒性、基因毒性的综合性 N-DBPs 毒性评估 体系需要建立。因此,应在深入理解 N-DBPs 的生 成机制的基础上,综合评估 N-DBPs 生成量与其毒 性效应,针对性开发可有效控制高毒性消毒副产物 生成的消毒工艺(如采用二氧化氯、紫外消毒或采用 复合消毒形式等),从而降低消毒副产物生成,提高 供水水质。 通讯作者简介:杨欣(1981—),女,博士,教授,主要研究方向 为水的物理化学处理技术和饮用水安全。

参考文献(References):

- Rook J J. Formation of haloforms during chlorination of natural waters [J]. Water Treatment and Examination, 1974, 23(2): 234-243
- [2] Christman R F, Norwood D L, Millington D S, et al. Identity and yields of major halogenated products of aquatic fulvic acid chlorination [J]. Environmental Science & Technology, 1983, 17(10): 625-628
- [3] Oliver B G. Dihaloacetonitriles in drinking water: Algae and fulvic acid as precursors [J]. Environmental Science & Technology, 1983, 17(2): 80-83
- [4] Krasner S W, Weinberg H S, Richardson S D, et al. Occurrence of a new generation of disinfection byproducts
 [J]. Environmental Science & Technology, 2006, 40(23): 7175-7185
- [5] Plewa M J, Wagner E D, Muellner M G, et al. Comparative Mammalian Cell Toxicity of N-DBPs and C-DBPs
 [M]// Karanfil T, Krasner S W, Westerhoff P, et al. Disinfection By-Products in Drinking Water. Washington DC: American Chemical Society, 2008: 36-50
- [6] Plewa M J, Muellner M G, Richardson S D, et al. Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts [J]. Environmental Science & Technology, 2008, 42(3): 955-961
- [7] Muellner M G, Wagner E D, McCalla K, et al. Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic? [J]. Environmental Science & Technology, 2007, 41(2): 645-651
- [8] Diana M, Felipe-Sotelo M, Bond T. Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer: A review [J]. Water Research, 2019, 162: 492-504
- [9] Bond T, Templeton M R, Graham N. Precursors of nitrogenous disinfection by-products in drinking water—A critical review and analysis [J]. Journal of Hazardous Materials, 2012, 235-236: 1-16
- [10] Merlet N, Thibaud H, Dore M. Chloropicrin formation during oxidative treatments in the preparation of drinking water [J]. Science of the Total Environment, 1985, 47: 223-228
- [11] Taguchi V Y, Jenkins S W D, Wang D T, et al. Determination of N-nitrosodimethylamine by isotope dilution, high-resolution mass spectrometry [J]. Canadian Journal

of Applied Spectroscopy, 1994, 39(3): 87-93

- [12] Kadmi Y, Favier L, Wolbert D. N-nitrosamines, emerging disinfection by-products of health concern: An overview of occurrence, mechanisms of formation, control and analysis in water [J]. Water Supply, 2014, 15(1): 11-25
- [13] Simpson K L, Hayes K P. Drinking water disinfection byproducts: An Australian perspective [J]. Water Research, 1998, 32(5): 1522-1528
- [14] Goslan E H, Krasner S W, Bower M, et al. A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland [J]. Water Research, 2009, 43(18): 4698-4706
- [15] Liew D, Linge K L, Joll C A, et al. Determination of halonitromethanes and haloacetamides: An evaluation of sample preservation and analyte stability in drinking water [J]. Journal of Chromatography A, 2012, 1241: 117-122
- [16] Wang L, Chen Y, Chen S W, et al. A one-year long survey of temporal disinfection byproducts variations in a consumer's tap and their removals by a point-of-use facility [J]. Water Research, 2019, 159: 203-213
- [17] Chu W H, Gao N Y, Templeton M R, et al. Comparison of inclined plate sedimentation and dissolved air flotation for the minimisation of subsequent nitrogenous disinfection by-product formation [J]. Chemosphere, 2011, 83(5): 647-651
- [18] Chu W H, Gao N Y, Deng Y, et al. Formation of nitrogenous disinfection by-products from pre-chloramination
 [J]. Chemosphere, 2011, 85(7): 1187-1191
- [19] Wei J R, Ye B X, Wang W Y, et al. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China [J]. Science of the Total Environment, 2010, 408(20): 4600-4606
- [20] Ding H H, Meng L P, Zhang H F, et al. Occurrence, profiling and prioritization of halogenated disinfection byproducts in drinking water of China [J]. Environmental Science Processes & Impacts, 2013, 15(7): 1424-1429
- [21] Gan W H, Guo W H, Mo J M, et al. The occurrence of disinfection by-products in municipal drinking water in China's Pearl River Delta and a multipathway cancer risk assessment [J]. Science of the Total Environment, 2013, 447: 108-115
- [22] Huang H, Zhu H H, Gan W H, et al. Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen, China [J]. Chemosphere, 2017, 188: 257-264
- [23] Chu W H, Gao N Y, Yin D Q, et al. Trace determination

of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization [J]. Journal of Chromatography A, 2012, 1235: 178-181

- [24] Zhou X L, Zheng L L, Chen S Y, et al. Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China [J]. Ecotoxicology and Environmental Safety, 2019, 171: 813-822
- [25] Yu Y, Ma X, Chen R Y, et al. The occurrence and transformation behaviors of disinfection byproducts in drinking water distribution systems in rural areas of eastern China [J]. Chemosphere, 2019, 228: 101-109
- [26] Templeton M R, Chen Z. NDMA and seven other nitrosamines in selected UK drinking water supply systems [J]. Journal of Water Supply: Research and Technology-Aqua, 2010, 59(4): 277-283
- [27] Asami M, Oya M, Kosaka K. A nationwide survey of NDMA in raw and drinking water in Japan [J]. Science of the Total Environment, 2009, 407(11): 3540-3545
- [28] Bei E, Shu Y Y, Li S X, et al. Occurrence of nitrosamines and their precursors in drinking water systems around mainland China [J]. Water Research, 2016, 98: 168-175
- [29] Krasner S W, Mitch W A, McCurry D L, et al. Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review [J]. Water Research, 2013, 47 (13): 4433-4450
- [30] Ma F J, Wan Y, Yuan G X, et al. Occurrence and source of nitrosamines and secondary amines in groundwater and its adjacent Jialu River Basin, China [J]. Environmental Science & Technology, 2012, 46(6): 3236-3243
- [31] Wang C K, Zhang X J, Wang J, et al. Detecting N-nitrosamines in water treatment plants and distribution systems in China using ultra-performance liquid chromatographytandem mass spectrometry [J]. Frontiers of Environmental Science & Engineering, 2012, 6(6): 770-777
- [32] Wang W F, Yu J W, An W, et al. Occurrence and profiling of multiple nitrosamines in source water and drinking water of China [J]. Science of the Total Environment, 2016, 551-552: 489-495
- [33] Li T, Yu D, Xian Q M, et al. Variation of levels and distribution of N-nitrosamines in different seasons in drinking waters of East China [J]. Environmental Science & Pollution Research International, 2015, 22 (15): 11792-11800
- [34] Wang W F, Hu J Y, Yu J W, et al. Determination of N-nitrosodimethylamine in drinking water by UPLC-MS/MS

[J]. Journal of Environmental Sciences, 2010, 22 (10): 1508-1512

- [35] Wang C K, Liu S M, Wang J, et al. Monthly survey of Nnitrosamine yield in a conventional water treatment plant in North China [J]. Journal of Environmental Sciences, 2015, 38: 142-149
- [36] Wang W F, Ren S Y, Zhang H F, et al. Occurrence of nine nitrosamines and secondary amines in source water and drinking water: Potential of secondary amines as nitrosamine precursors [J]. Water Research, 2011, 45(16): 4930-4938
- [37] Wang X Z, Liu Z M, Wang C, et al. Occurrence and formation potential of nitrosamines in river water and ground water along the Songhua River, China [J]. Journal of Environmental Sciences, 2016, 50: 65-71
- [38] Fan C C, Lin T F. N-nitrosamines in drinking water and beer: Detection and risk assessment [J]. Chemosphere, 2018, 200: 48-56
- [39] Joo S H, Mitch W A. Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines [J]. Environmental Science & Technology, 2007, 41(4): 1288-1296
- [40] Yang X, Fan C, Shang C, et al. Nitrogenous disinfection byproducts formation and nitrogen origin exploration during chloramination of nitrogenous organic compounds [J]. Water Research, 2010, 44(9): 2691-2702
- [41] Yang X, Shen Q Q, Guo W H, et al. Precursors and nitrogen origins of trichloronitromethane and dichloroacetonitrile during chlorination/chloramination [J]. Chemosphere, 2012, 88(1): 25-32
- [42] Yang X, Shang C, Shen Q Q, et al. Nitrogen origins and the role of ozonation in the formation of haloacetonitriles and halonitromethanes in chlorine water treatment [J]. Environmental Science & Technology, 2012, 46(23): 12832-12838
- [43] Vu T N, Kimura S Y, Plewa M J, et al. Predominant Nhaloacetamide and haloacetonitrile formation in drinking water via the aldehyde reaction pathway [J]. Environmental Science & Technology, 2019, 53(2): 850-859
- [44] Shan J H, Hu J, Sule Kaplan-Bekaroglu S, et al. The effects of pH, bromide and nitrite on halonitromethane and trihalomethane formation from amino acids and amino sugars [J]. Chemosphere, 2012, 86(4): 323-328
- [45] Bond T, Henriet O, Goslan E H, et al. Disinfection byproduct formation and fractionation behavior of natural organic matter surrogates [J]. Environmental Science &

Technology, 2009, 43(15): 5982-5989

- [46] Hong H C, Xiong Y J, Ruan M Y, et al. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine [J]. Science of the Total Environment, 2013, 444: 196-204
- [47] Hu J, Song H, Addison J W, et al. Halonitromethane formation potentials in drinking waters [J]. Water Research, 2010, 44(1): 105-114
- [48] Song H, Addison J W, Hu J, et al. Halonitromethanes formation in wastewater treatment plant effluents [J]. Chemosphere, 2010, 79(2): 174-179
- [49] Huang F Q, Ruan M Y, Yan J D, et al. An improved method for determining HNMs in drinking water [J]. Water Supply, 2013, 13(5): 1257-1264
- [50] Hu J, Song H, Karanfil T. Comparative analysis of halonitromethane and trihalomethane formation and speciation in drinking water: The effects of disinfectants, pH, bromide, and nitrite [J]. Environmental Science & Technology, 2010, 44(2): 794-799
- [51] Hong H C, Qian L Y, Xiao Z Q, et al. Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin [J]. Journal of Hydrology, 2015, 531: 802-809
- [52] Shah A D, Mitch W A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways [J]. Environmental Science & Technology, 2012, 46(1): 119-131
- [53] Reckhow D A, Linden K G, Kim J, et al. Effect of UV treatment on DBP formation [J]. Journal-American Water Works Association, 2010, 102(6): 100-113
- [54] Shah A D, Dotson A D, Linden K G, et al. Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water [J]. Environmental Science & Technology, 2011, 45(8): 3657-3664
- [55] Vione D, Maurino V, Minero C, et al. Formation of nitrophenols upon UV irradiation of phenol and nitrate in aqueous solutions and in TiO₂ aqueous suspensions [J]. Chemosphere, 2001, 44(2): 237-248
- [56] Glezer V, Harris B, Tal N, et al. Hydrolysis of haloacetonitriles: Linear free energy relationship, kinetics and products [J]. Water Research, 1999, 33(8): 1938-1948
- [57] Yu Y, Reckhow D A. Formation and occurrence of Nchloro-2,2-dichloroacetamide, a previously overlooked nitrogenous disinfection byproduct in chlorinated drinking

waters [J]. Environmental Science & Technology, 2017, 51(3): 1488-1497

- [58] Yu Y, Reckhow D A. Kinetic analysis of haloacetonitrile stability in drinking waters [J]. Environmental Science & Technology, 2015, 49(18): 11028-11036
- [59] Huang H, Wu Q Y, Hu H Y, et al. Dichloroacetonitrile and dichloroacetamide can form independently during chlorination and chloramination of drinking waters, model organic matters, and wastewater effluents [J]. Environmental Science & Technology, 2012, 46 (19): 10624-10631
- [60] Chu W H, Li X, Bond T, et al. The formation of haloacetamides and other disinfection by-products from non-nitrogenous low-molecular weight organic acids during chloramination [J]. Chemical Engineering Journal, 2016, 285: 164-171
- [61] Kimura S Y, Komaki Y, Plewa M J, et al. Chloroacetonitrile and N,2-dichloroacetamide formation from the reaction of chloroacetaldehyde and monochloramine in water
 [J]. Environmental Science & Technology, 2013, 47(21): 12382-12390
- [62] Ding S K, Chu W H, Bond T, et al. Contribution of amide-based coagulant polyacrylamide as precursors of haloacetamides and other disinfection by-products [J]. Chemical Engineering Journal, 2018, 350: 356-363
- [63] Wang A Q, Lin Y L, Xu B, et al. Degradation of acrylamide during chlorination as a precursor of haloacetonitriles and haloacetamides [J]. Science of the Total Environment, 2018, 615: 38-46
- [64] How Z T, Kristiana I, Busetti F, et al. Organic chloramines in chlorine-based disinfected water systems: A critical review [J]. Journal of Environmental Sciences, 2017, 58: 2-18
- [65] Nihemaiti M, Le Roux J, Hoppe-Jones C, et al. Formation of haloacetonitriles, haloacetamides, and nitrogenous heterocyclic byproducts by chloramination of phenolic compounds [J]. Environmental Science & Technology, 2017, 51(1): 655-663
- [66] Chuang Y H, McCurry D L, Tung H H, et al. Formation pathways and trade-offs between haloacetamides and haloacetaldehydes during combined chlorination and chloramination of lignin phenols and natural waters [J]. Environmental Science & Technology, 2015, 49 (24): 14432-14440
- [67] Chu W H, Gao N Y, Deng Y, et al. Precursors of dichloroacetamide, an emerging nitrogenous DBP formed dur-

ing chlorination or chloramination [J]. Environmental Science & Technology, 2010, 44(10): 3908-3912

- [68] Chu W H, Krasner S W, Gao N Y, et al. Contribution of the antibiotic chloramphenicol and its analogues as precursors of dichloroacetamide and other disinfection byproducts in drinking water [J]. Environmental Science & Technology, 2016, 50(1): 388-396
- [69] Choi J, Valentine R L. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: A new disinfection by-product [J]. Water Research, 2002, 36(4): 817-824
- [70] Mitch W A, Sedlak D L. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination
 [J]. Environmental Science & Technology, 2002, 36(4): 588-595
- Schreiber I M, Mitch W A. Occurrence and fate of nitrosamines and nitrosamine precursors in wastewater-impacted surface waters using boron as a conservative tracer [J]. Environmental Science & Technology, 2006, 40 (10): 3203-3210
- [72] Schreiber I M, Mitch W A. Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen [J]. Environmental Science & Technology, 2006, 40(19): 6007-6014
- [73] McCurry D L, Ishida K P, Oelker G L, et al. Reverse osmosis shifts chloramine speciation causing re-formation of NDMA during potable reuse of wastewater [J]. Environmental Science & Technology, 2017, 51(15): 8589-8596
- [74] Sgroi M, Vagliasindi F G A, Snyder S A, et al. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal [J]. Chemosphere, 2018, 191: 685-703
- [75] Spahr S, Cirpka O A, Von Gunten U, et al. Formation of N-nitrosodimethylamine during chloramination of secondary and tertiary amines: Role of molecular oxygen and radical intermediates [J]. Environmental Science & Technology, 2017, 51(1): 280-290
- [76] Le Roux J, Gallard H, Croué J-P. Formation of NDMA and halogenated DBPs by chloramination of tertiary amines: The influence of bromide ion [J]. Environmental Science & Technology, 2012, 46(3): 1581-1589
- [77] Luh J, Mariñas B J. Bromide ion effect on N-nitrosodimethylamine formation by monochloramine [J]. Environmental Science & Technology, 2012, 46(9): 5085-5092
- [78] Andrzejewski P, Kasprzyk-Hordern B, Nawrocki J. N-nitrosodimethylamine (NDMA) formation during ozonation

of dimethylamine-containing waters [J]. Water Research, 2008, 42(4): 863-870

- [79] Padhye L, Luzinova Y, Cho M, et al. PolyDADMAC and dimethylamine as precursors of N-nitrosodimethylamine during ozonation: Reaction kinetics and mechanisms [J]. Environmental Science & Technology, 2011, 45 (10): 4353-4359
- [80] Schmidt C K, Brauch H J. N,N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment [J]. Environmental Science & Technology, 2008, 42 (17): 6340-6346
- [81] Yang L, Chen Z L, Shen J M, et al. Reinvestigation of the nitrosamine-formation mechanism during ozonation [J]. Environmental Science & Technology, 2009, 43 (14): 5481-5487
- [82] Zhang Y M, Chu W H, Yao D C, et al. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity [J]. Journal of Environmental Sciences, 2017, 58: 322-330
- [83] Curieux F L, Marzin D, Erb F. Study of the genotoxic activity of five chlorinated propanones using the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test [J]. Mutation Research, 1995, 341(4): 289-302
- [84] Richardson S D, Plewa M J, Wagner E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research/ Reviews in Mutation Research, 2007, 636(1): 178-242
- [85] Lin T, Zhou D J, Dong J, et al. Acute toxicity of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), on zebrafish (*Danio rerio*) [J]. Ecotoxicology and Environmental Safety, 2016, 133: 97-104
- [86] Ahmed A E, Jacob S, Nagy A A, et al. Dibromoacetonitrile-induced protein oxidation and inhibition of proteasomal activity in rat glioma cells [J]. Toxicology Letters, 2008, 179(1): 29-33
- [87] Lu G H, Qin D H, Wang Y H, et al. Single and combined effects of selected haloacetonitriles in a human-derived hepatoma line [J]. Ecotoxicology and Environmental Safety, 2018, 163: 417-426
- [88] Plewa M J, Wagner E D, Paulina J, et al. Halonitromethane drinking water disinfection byproducts: Chemical characterization and mammalian cell cytotoxicity and genotoxicity [J]. Environmental Science & Technology,

2004, 38(1): 62-68

- [89] Wagner E D, Plewa M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review [J]. Journal of Environmental Sciences, 2017, 58: 64-76
- [90] Liviac D, Creus A, Marcos R. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection byproducts (DBPs), in human cells treated *in vitro* [J]. Environmental Research, 2009, 109(3): 232-238
- [91] Yin J B, Wu B, Zhang X X, et al. Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method [J]. Chemosphere, 2017, 185: 20-28
- [92] Schneider M, Quistad G B, Casida J E. Glutathione activation of chloropicrin in the *Salmonella* mutagenicity test [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1999, 439(2): 233-238
- [93] Kundu B, Richardson S D, Granville C A, et al. Comparative mutagenicity of halomethanes and halonitromethanes in *Salmonella* TA100: Structure-activity analysis and mutation spectra [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 554 (1): 335-350
- [94] Kundu B, Richardson S D, Swartz P D, et al. Mutagenicity in *Salmonella* of halonitromethanes: A recently recognized class of disinfection by-products in drinking water [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2004, 562(1): 39-65
- [95] Yang F, Zhang J, Chu W H, et al. Haloactamides versus halomethanes formation and toxicity in chloraminated drinking water [J]. Journal of Hazardous Materials, 2014, 274: 156-163
- [96] Plewa M J, Muellner M G, Richardson S D, et al. Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts [J]. Environmental Science & Technology, 2008, 42(3): 955-961
- [97] 庞维海,杨帆,楚文海,等. 饮用水中氯代乙酰胺的细胞毒性和遗传毒性[J]. 同济大学学报: 自然科学版, 2014, 42(12): 1873-1878
 Pang W H, Yang F, Chu W H, et al. Cytotoxicity and genotoxicity of chloroacetamide, a relatively newly identified group of nitrogenous disinfection byproducts in drinking water [J]. Journal of Tongji University: Natural Science, 2014, 42(12): 1873-1878 (in Chinese)
- [98] Ding X L, Zhu J Y, Wang X X, et al. Different cytotoxicity of disinfection by-product haloacetamides on two ex-

posure pathway-related cell lines: Human gastric epithelial cell line GES-1 and immortalized human keratinocyte cell line HaCaT [J]. Science of the Total Environment, 2019, 692: 1267-1275

- [99] Annola K, Heikkinen A T, Partanen H, et al. Transplacental transfer of nitrosodimethylamine in perfused human placenta [J]. Placenta, 2009, 30(3): 277-283
- [100] Liteplo R G, Meek M E. N-nitrosodimethylamine: Hazard characterization and exposure-response analysis [J]. Journal of Environmental Science & Health Part C-Environmental Carcinogenesis Reviews, 2001, 19(1): 281-304
- [101] Sharma V, Singh M. N-nitrosodimethylamine as a hazardous chemical toxicant in drinking water [J]. International Research Journal of Pharmacy, 2012, 3(3): 60-65
- [102] Wang H Y, Qin M, Dong L, et al. Genotoxicity of a lowdose nitrosamine mixture as drinking water disinfection byproducts in NIH3T3 cells [J]. International Journal of Medical Sciences, 2017, 14(10): 961-969
- [103] Wagner E D, Hsu K M, Lagunas A, et al. Comparative genotoxicity of nitrosamine drinking water disinfection

byproducts in *Salmonella* and mammalian cells [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2012, 741(1): 109-115

- [104] Lipscomb J C, El-Demerdash E, Ahmed A E. Haloacetonitriles: Metabolism and Toxicity [M]//Whitacre D M. Reviews of Environmental Contamination and Toxicology. New York: Springer New York, 2009: 169-200
- [105] Van de Water B, Wang Y, Asmellash S, et al. Distinct endoplasmic reticulum signaling pathways regulate apoptotic and necrotic cell death following iodoacetamide treatment
 [J]. Chemical Research in Toxicology, 1999, 12(10): 943-951
- [106] Hong H C, Wu H, Chen J, et al. Cytotoxicity induced by iodinated haloacetamides via ROS accumulation and apoptosis in HepG-2 cells [J]. Environmental Pollution, 2018, 242: 191-197
- [107] 徐森,张倩男,杨辉,等.亚硝胺及前体化合物的致癌效应及其食用安全性研究进展[J]. 癌变・畸变・突变,2018,30(1):76-79