Fang Y, Wen J, Zeng G M, et al. From nZVI to SNCs:Development of a better material for pollutant removal in water[J]. Environmental Science and Pollution Research, 2018, 25(7):6175-6195
|
杨晓丹, 王玉如, 李敏睿. 纳米零价铁的制备、改性及对废水中重金属和有机污染物的去除[J]. 化工进展, 2019, 38(7):3412-3424
Yang X D, Wang Y R, Li M R. Preparation, modification of nanoscale zero valent iron and its application for the removal of heavy metals and organic pollutants from wastewater[J]. Chemical Industry and Engineering Progress, 2019, 38(7):3412-3424(in Chinese)
|
Zhu S, Ho S H, Huang X, et al. Magnetic nanoscale zero-valent iron assisted biochar:Interfacial chemical behaviors and heavy metals remediation performance[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11):9673-9682
|
Zhao J, Yang X, Liang G W, et al. Effective removal of two fluoroquinolone antibiotics by PEG-4000 stabilized nanoscale zero-valent iron supported onto zeolite (PZ-NZVI)[J]. Science of the Total Environment, 2020, 710:136289
|
苗令占, 王沛芳, 侯俊, 等. 金属纳米材料对不同微生物聚集体的毒性研究进展[J]. 水资源保护, 2019, 35(1):73-78
, 94 Miao L Z, Wang P F, Hou J, et al. Research progress on toxicity of metallic nanomaterials to different microbial aggregates[J]. Water Resources Protection, 2019, 35(1):73-78, 94(in Chinese)
|
王菁姣, 陈家玮. 不同种类纳米零价铁的毒性比较研究[J]. 现代地质, 2012, 26(5):926-931
Wang J J, Chen J W. Comparison study on toxicity of different nanoscale zero-valent iron[J]. Geoscience, 2012, 26(5):926-931(in Chinese)
|
孙馨, 王雅楠, 王薇, 等. 水中纳米零价铁在斑马鱼体内的生物富集和组织病理学研究[J]. 安全与环境学报, 2016, 16(3):371-377
Sun X, Wang Y N, Wang W, et al. Bioaccumulation and histopathology research of nano-scale zero-valent iron on zebrafish (Danio rerio)[J]. Journal of Safety and Environment, 2016, 16(3):371-377(in Chinese)
|
王学, 李勇超, 李铁龙, 等. 零价纳米铁对大肠杆菌的毒性效应[J]. 生态毒理学报, 2012, 7(1):49-56
Wang X, Li Y C, Li T L, et al. Toxicity effects of nano-Fe0 on Escherichia coli[J]. Asian Journal of Ecotoxicology, 2012, 7(1):49-56(in Chinese)
|
Marsalek B, Jancula D, Marsalkova E, et al. Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria[J]. Environmental Science & Technology, 2012, 46(4):2316-2323
|
Lei C, Zhang L Q, Yang K, et al. Toxicity of iron-based nanoparticles to green algae:Effects of particle size, crystal phase, oxidation state and environmental aging[J]. Environmental Pollution, 2016, 218:505-512
|
Wang Y, Song Y Q, Shi C F, et al. Performance and mechanism of Cr(Ⅵ) removal by resin-supported nanoscale zero-valent iron (nZVI):Role of nZVI distribution[J]. Desalination and Water Treatment, 2019, 166:344-352
|
梁长华. 纳米NiO对小球藻的生物毒性及致毒机制研究[D]. 大连:大连海事大学, 2010:28-29 Liang C H. Research on biotoxicity and toxic mechanism of NiO nanoparticles on Chlorella vulgaris[D]. Dalian:Dalian Maritime University, 2010:28
-29(in Chinese)
|
陈薇. 金属有机骨架材料抑制藻细胞生长效果及机理研究[D]. 福州:福州大学, 2018:22-23 Chen W. The effect and mechanisms of metal organic frameworks on inhibiting the growth of harmful algae[D]. Fuzhou:Fuzhou University, 2018:22
-23(in Chinese)
|
Huang L, Lu Y Y, Gao X, et al. Ammonium-induced oxidative stress on plant growth and antioxidative response of duckweed (Lemna minor L.)[J]. Ecological Engineering, 2013, 58:355-362
|
Kumar M, Lee S C, Kim J Y, et al. Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.)[J]. Journal of Plant Biology, 2014, 57(6):383-393
|
张奇, 曹英昆, 邢泽宇, 等. pH、盐度对小球藻生长量和溶氧量的影响[J]. 湖北农业科学, 2018, 57(11):83-86
Zhang Q, Cao Y K, Xing Z Y, et al. Effects of pH and salinity on growth and dissolution of Chlorella vlgaris[J]. Hubei Agricultural Sciences, 2018, 57(11):83-86(in Chinese)
|
吕梦梦. 普通小球藻培养过程中pH条件优化的实验研究[D]. 天津:天津大学, 2013:31-43 Lv M M. Experimental studies on the optimization of pH conditions during Chlorella vulgaris culture process[D]. Tianjin:Tianjin University, 2013:31
-43(in Chinese)
|
Bhattacharya K, Hoffmann E, Schins R F P, et al. Comparison of micro- and nanoscale Fe3+-containing (hematite) particles for their toxicological properties in human lung cells in vitro[J]. Toxicological Sciences, 2012, 126(1):173-182
|
徐莺莺, 林晓影, 陈春英. 影响纳米材料毒性的关键因素[J]. 科学通报, 2013, 58(24):2466-2478
Xu Y Y, Lin X Y, Chen C Y. Key factors influencing the toxicity of nanomaterials[J]. Chinese Science Bulletin, 2013, 58(24):2466-2478(in Chinese)
|
石清. 纳米三氧化二铁对藻类的毒性效应及生态风险研究[D]. 石家庄:河北科技大学, 2019:27-28 Shi Q. Toxic effects of nano-Fe2O3
on algae and ecological risk assessment[D]. Shijiazhuang:Hebei University of Science and Technology, 2019:27-28(in Chinese)
|
李雅洁, 王静, 崔益斌, 等. 纳米氧化锌和二氧化钛对斜生栅藻的毒性效应[J]. 农业环境科学学报, 2013, 32(6):1122-1127
Li Y J, Wang J, Cui Y B, et al. Ecotoxicological effects of ZnO and TiO2 nanoparticles on microalgae Scenedesmus oblignus[J]. Journal of Agro-Environment Science, 2013, 32(6):1122-1127(in Chinese)
|
郐安琪, 赵伟华, 李青云, 等. 典型污染物对藻类生态毒性效应研究进展[J]. 长江科学院院报, 2015, 32(6):100-109
Kuai A Q, Zhao W H, Li Q Y, et al. Research advances in ecotoxicological effects of typical pollutants on algae[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(6):100-109(in Chinese)
|
袁媛, 邱霞. 急性毒性试验研究进展[J]. 海军医学杂志, 2013, 34(5):360-361
|
Chen S, Beardall J, Gao K. A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions[J]. Biogeosciences, 2014, 11(17):4829-4837
|
雷铖. 铁基纳米材料对水中有机污染物的去除作用及藻类毒性效应[D]. 杭州:浙江大学, 2019:105-110 Lei C. Organic contaminants removal and algal toxicity of iron-based nanomaterials[D]. Hangzhou:Zhejiang University, 2019:105
-110(in Chinese)
|
Dong H R, Xie Y K, Zeng G M, et al. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron[J]. Chemosphere, 2016, 144:1682-1689
|
Tai C, She J P, Yin Y G, et al. Degradation of 2,4,6-trichlorophenol using hydrogen peroxide catalyzed by nanoscale zero-valent iron supported on ion exchange resin[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(6):5850-5855
|
Fajardo C, Gil-Díaz M, Costa G, et al. Residual impact of aged nZVI on heavy metal-polluted soils[J]. Science of the Total Environment, 2015, 535:79-84
|