Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627
|
Ju-Nam Y, Lead J R. Manufactured nanoparticles:An overview of their chemistry, interactions and potential environmental implications[J]. Science of the Total Environment, 2008, 400(1-3):396-414
|
Engin A B, Engin A. Nanoparticles and neurotoxicity:Dual response of glutamatergic receptors[J]. Progress in Brain Research, 2019, 245:281-303
|
Song Y G, Li X, Wang L Y, et al. Nanomaterials in humans:Identification, characteristics, and potential damage[J]. Toxicologic Pathology, 2011, 39(5):841-849
|
Keelan J A. Nanotoxicology:Nanoparticles versus the placenta[J]. Nature Nanotechnology, 2011, 6(5):263-264
|
Sharma H S, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology[J]. Progress in Brain Research, 2007, 162:245-273
|
Ismail T, Lee H K, Kim C, et al. Comparative analysis of the developmental toxicity in Xenopus laevis and Danio rerio induced by Al2O3 nanoparticle exposure[J]. Environmental Toxicology and Chemistry, 2019, 38(12):2672-2681
|
Dong L, Tang S, Deng F C, et al. Shape-dependent toxicity of alumina nanoparticles in rat astrocytes[J]. Science of the Total Environment, 2019, 690:158-166
|
Shrivastava R, Raza S, Yadav A, et al. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain[J]. Drug and Chemical Toxicology, 2014, 37(3):336-347
|
Xilouri M, Brekk O R, Stefanis L. Autophagy and alpha-synuclein:Relevance to Parkinson's disease and related synucleopathies[J]. Movement Disorders, 2016, 31(2):178-192
|
Suresh S N, Chavalmane A K, Pillai M, et al. Modulation of autophagy by a small molecule inverse agonist of ERRα is neuroprotective[J]. Frontiers in Molecular Neuroscience, 2018, 11:109
|
封秀梅, 许明敏, 黄辰, 等. 自噬抑制剂3-MA在神经系统疾病中的作用的研究进展[J]. 中国比较医学杂志, 2019, 29(8):129-134
Feng X M, Xu M M, Huang C, et al. Research progress on the role of autophagy inhibitor, 3-methyladenine, in nervous system diseases[J]. Chinese Journal of Comparative Medicine, 2019, 29(8):129-134(in Chinese)
|
Seglen P O, Gordon P B. 3-methyladenine:Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(6):1889-1892
|
杨叶, 陈尚雅, 张恩国, 等. 纳米材料诱导细胞自噬的研究进展[J]. 中国工业医学杂志, 2017, 30(5):348-351
, 401 Yang Y, Chen S Y, Zhang E G, et al. Progress in study on cell autophagy induced by nanomaterials[J]. Chinese Journal of Industrial Medicine, 2017, 30(5):348-351, 401(in Chinese)
|
葛翠翠. 不同粒径纳米氧化铝致神经细胞死亡方式的研究[D]. 太原:山西医科大学, 2012:11-31 Ge C C. Study on the death pattern of nerve cells induced by alumina nanoparticles with different particle sizes[D]. Taiyuan:Shanxi Medical University, 2012:11
-31(in Chinese)
|
陈金, 范蓉, 张萍, 等. 纳米氧化铝对斑马鱼幼鱼的神经毒性及mTOR基因的作用[J]. 环境与职业医学, 2019, 36(5):431-437
Chen J, Fan R, Zhang P, et al. Al2O3 nanoparticles induced neurotoxicity and role of mTOR gene in zebrafish larvae[J]. Journal of Environmental and Occupational Medicine, 2019, 36(5):431-437(in Chinese)
|
Schnörr S J, Steenbergen P J, Richardson M K, et al. Measuring thigmotaxis in larval zebrafish[J]. Behavioural Brain Research, 2012, 228(2):367-374
|
Johnston H J, Verdon R, Gillies S, et al. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials[J]. Critical Reviews in Toxicology, 2018, 48(3):252-271
|
Dong E Y, Wang Y L, Yang S T, et al. Toxicity of nano gamma alumina to neural stem cells[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(9):7848-7856
|
Braydich-Stolle L K, Speshock J L, Castle A, et al. Nanosized aluminum altered immune function[J]. ACS Nano, 2010, 4(7):3661-3670
|
Balasubramanyam A, Sailaja N, Mahboob M, et al. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test[J]. Mutagenesis, 2009, 24(3):245-251
|
Zhang Q L, Li M Q, Ji J W, et al. In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms[J]. International Journal of Immunopathology and Pharmacology, 2011, 24(Suppl.1):23S-29S
|
Zhang Q L, Xu L, Wang J, et al. Lysosomes involved in the cellular toxicity of nano-alumina:Combined effects of particle size and chemical composition[J]. Journal of Biological Regulators and Homeostatic Agents, 2013, 27(2):365-375
|
Lee C Y, Horng J L, Chen P Y, et al. Silver nanoparticle exposure impairs ion regulation in zebrafish embryos[J]. Aquatic Toxicology, 2019, 214:105263
|
Bar-Ilan O, Chuang C C, Schwahn D J, et al. TiO2 nanoparticle exposure and illumination during zebrafish development:Mortality at parts per billion concentrations[J]. Environmental Science & Technology, 2013, 47(9):4726-4733
|
Saverino C, Gerlai R. The social zebrafish:Behavioral responses to conspecific, heterospecific, and computer animated fish[J]. Behavioural Brain Research, 2008, 191(1):77-87
|
Tierney K B. Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish[J]. Biochimica et Biophysica Acta, 2011, 1812(3):381-389
|
Grinde B. Autophagy and lysosomal proteolysis in the liver[J]. Experientia, 1985, 41(9):1089-1095
|
Wu Y Y, Wang X, Guo H J, et al. Synthesis and screening of 3-MA derivatives for autophagy inhibitors[J]. Autophagy, 2013, 9(4):595-603
|
阮雯静, 万福生. Beclin1-Vps34在自噬发生发展中的作用[J]. 中国细胞生物学学报, 2016, 38(11):1420-1426
Ruan W J, Wan F S. The role of Beclin1-Vps34 in the development of autophagy[J]. Chinese Journal of Cell Biology, 2016, 38(11):1420-1426(in Chinese)
|
Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy:The clash between damage and metabolic needs[J]. Cell Death and Differentiation, 2015, 22(3):377-388
|
Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease[J]. Journal of Neuropathology and Experimental Neurology, 2001, 60(8):759-767
|
齐艺, 李艳博, 郭彩霞. 纳米材料诱导线粒体自噬研究进展[J]. 环境与职业医学, 2019, 36(8):791-796
Qi Y, Li Y B, Guo C X. Research progress on mitophagy induced by nanomaterials[J]. Journal of Environmental and Occupational Medicine, 2019, 36(8):791-796(in Chinese)
|
Li H, Huang T, Wang Y H, et al. Toxicity of alumina nanoparticles in the immune system of mice[J]. Nanomedicine, 2020, 15(9):927-946
|
Lei Q, Yi T, Chen C. NF-κB-gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3(NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction[J]. Medical Science Monitor:International Medical Journal of Experimental and Clinical Research, 2018, 24:6044-6052
|
Backer J M. The regulation and function of Class Ⅲ PI3Ks:Novel roles for Vps34[J]. The Biochemical Journal, 2008, 410(1):1-17
|
Zhu J L, Cai Y S, Xu K, et al. Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy-dependent pathway in human synovial sarcoma cells[J]. Oncology Reports, 2018, 40(4):1927-1936
|
Tanida I, Ueno T, Kominami E. LC3 and autophagy[J]. Methods in Molecular Biology, 2008, 445:77-88
|