中华人民共和国环境保护部. 湖库富营养化防治技术政策:环发[2004] 59号[Z]. 北京:中华人民共和国环境保护部, 2004
|
Carmichael W W. Cyanobacteria secondary metabolites-The cyanotoxins[J]. The Journal of Applied Bacteriology, 1992, 72(6):445-459
|
Otsuka S, Suda S, Li R H, et al. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence[J]. FEMS Microbiology Letters, 1999, 172(1):15-21
|
Fastner J, Erhard M, von Döhren H. Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. Applied & Environmental Microbiology, 2001, 67(11):5069-5076
|
Alster A, Kaplan-Levy R N, Sukenik A, et al. Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake[J]. Hydrobiologia, 2010, 639(1):115-128
|
Rouhiainen L, Sivonen K, Buikema W J, et al. Characterization of toxin-producing cyanobacteria by using an oligonucleotide probe containing a tandemly repeated heptamer[J]. Journal of Bacteriology, 1995, 177(20):6021-6026
|
Chiu Y T, Chen Y H, Wang T S, et al. A qPCR-based tool to diagnose the presence of harmful cyanobacteria and cyanotoxins in drinking water sources[J].International Journal of Environmental Research and Public Health, 2017, 14(5):547
|
Tsao H W, Michinaka A, Yen H K, et al. Monitoring of geosmin producing Anabaena circinalis using quantitative PCR[J]. Water Research, 2014, 49:416-425
|
Pearson L A, Neilan B A. The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk[J]. Current Opinion in Biotechnology, 2008, 19(3):281-288
|
Michinaka A, Yen H K, Chiu Y T, et al. Rapid on-site multiplex assays for total and toxigenic Microcystis using real-time PCR with microwave cell disruption[J]. Water Science and Technology, 2012, 66(6):1247-1252
|
Lei L, Lei M, Lu Y, et al. Development of real-time PCR for quantification of Cylindrospermopsis raciborskii cells and potential cylindrospermopsin-producing genotypes in subtropical reservoirs of southern China[J]. Journal of Applied Phycology, 2019, 31:3749-3758
|
Ouahid Y, del Campo F F. Typing of toxinogenic Microcystis from environmental samples by multiplex PCR[J]. Applied Microbiology and Biotechnology, 2009, 85(2):405-412
|
Sevilla E, Martin-Luna B, Vela L, et al. Microcystin-LR synthesis as response to nitrogen:Transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806[J]. Ecotoxicology, 2010, 19(7):1167-1173
|
Ngwa F F, Madramootoo C A, Jabaji S. Development and application of a multiplex qPCR technique to detect multiple microcystin-producing cyanobacterial genera in a Canadian freshwater lake[J]. Journal of Applied Phycology, 2014, 26(4):1675-1687
|
Ouahid Y, Pérez-Silva G, del Campo F F. Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions[J]. Environmental Toxicology, 2005, 20(3):235-242
|
刘洋, 胡佩茹, 马思三, 等. 实时荧光定量PCR方法检测南太湖入湖口产毒微囊藻[J]. 湖泊科学, 2016, 28(2):246-252
Liu Y, Hu P R, Ma S S, et al. Detection of microcystin-producing Microcystis cells at the entrance of rivers to southern Lake Taihu by real-time fluorescence quantitative PCR[J]. Journal of Lake Sciences, 2016, 28(2):246-252(in Chinese)
|
Rasmussen J P, Giglio S, Monis P T, et al. Development and field testing of a real-time PCR assay for cylindrospermopsin-producing cyanobacteria[J]. Journal of Applied Microbiology, 2008, 104(5):1503-1515
|
Marbun Y R, Yen H K, Lin T F, et al. Rapid on-site monitoring of cylindrospermopsin-producers in reservoirs using quantitative PCR[J]. Sustainable Environment Research, 2012, 22(3):143-151
|
Baker L, Sendall B C, Gasser R B, et al. Rapid, multiplex-tandem PCR assay for automated detection and differentiation of toxigenic cyanobacterial blooms[J]. Molecular and Cellular Probes, 2013, 27(5-6):208-214
|
Te S H, Chen E Y, Gin K Y H. Comparison of quantitative PCR and droplet digital PCR multiplex assays for two genera of bloom-forming cyanobacteria, Cylindrospermopsis and Microcystis[J]. Applied and Environmental Microbiology, 2015, 81(15):5203-5211
|
Wang Z J, Song G F, Shao J H, et al. Establishment and field applications of real-time PCR methods for the quantification of potential MIB-producing cyanobacteria in aquatic systems[J]. Journal of Applied Phycology, 2016, 28(1):325-333
|
Chiu Y T, Yen H K, Lin T F. An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs:Method development and field applications[J]. Environmental Research, 2016, 151:618-627
|
Fischer W J, Garthwaite I, Miles C O, et al. Congener-independent immunoassay for microcystins and nodularins[J]. Environmental Science & Technology, 2001, 35(24):4849-4856
|
Lin T F, Liu C L, Yang F C, et al. Effect of residual chlorine on the analysis of geosmin, 2-MIB and MTBE in drinking water using the SPME technique[J]. Water Research, 2003, 37(1):21-26
|
Montgomery D C, Peck E A, Vining G G. Introduction to Linear Regression Analysis[M]. Wiley, 1982:9-37
|
World Health Organization (WHO). International Programme on Chemical Safety. Guidelines for drinking-water quality:Volume 2:Health criteria and other supporting information[R]. Geneva:WHO, 1996
|
Humpage A R, Falconer I R. Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice:Determination of no observed adverse effect level for deriving a drinking water guideline value[J]. Environmental Toxicology, 2003, 18(2):94-103
|
徐晓庆, 苏命, 朱宜平, 等. 基于荧光定量PCR技术构建水源地典型致嗅物质2-甲基异莰醇的评估方法及其应用[J]. 环境工程学报, 2020, 14(11):3208-3215
Xu X Q, Su M, Zhu Y P, et al. Evaluation of typical odorant 2-methylisoborneol based on real time qPCR in source water and its application[J]. Chinese Journal of Environmental Engineering, 2020, 14(11):3208-3215(in Chinese)
|