Perrings C, Dehnen-Schmutz K, Touza J, et al. How to manage biological invasions under globalization[J]. Trends in Ecology & Evolution, 2005, 20(5):212-215
|
Banks N C, Paini D R, Bayliss K L, et al. The role of global trade and transport network topology in the human-mediated dispersal of alien species[J]. Ecology Letters, 2015, 18(2):188-199
|
Havel J E, Kovalenko K E, Thomaz S M, et al. Aquatic invasive species:Challenges for the future[J]. Hydrobiologia, 2015, 750(1):147-170
|
Gallardo B, Clavero M, Sánchez M I, et al. Global ecological impacts of invasive species in aquatic ecosystems[J]. Global Change Biology, 2016, 22(1):151-163
|
章家恩, 赵本良, 罗明珠, 等. 外来生物福寿螺入侵的生态风险及其评价探讨[J]. 佛山科学技术学院学报:自然科学版, 2010, 28(5):1-6
Zhang J E, Zhao B L, Luo M Z, et al. The ecological risk analysis and assessment on the invasion of golden apple snails[J]. Journal of Foshan University:Natural Science Edition, 2010, 28(5):1-6(in Chinese)
|
中国新闻网. 生物入侵酿逾2000亿损失专家称控制源头是关键[EB/OL] (2017-11-20
)[2021-01-22]. https://www.chinanews.com.cn/sh/2017/11-20/8381370.shtml
|
王朝晖, 陈菊芳, 杨宇峰. 船舶压舱水引起的有害赤潮藻类生态入侵及其控制管理[J]. 海洋环境科学, 2010, 29(6):920-922
, 934 Wang Z H, Chen J F, Yang Y F. Control and management of harmful algal bloom species induced by ballast water[J]. Marine Environmental Science, 2010, 29(6):920-922, 934(in Chinese)
|
木辛. 从巴西龟看入侵物种放生问题[J]. 环境教育, 2016(11):50-53
|
陈洁君, 王晶. 我国外来入侵生物防控科技进展[J]. 生物安全学报, 2018, 27(1):16-19
Chen J J, Wang J. Progress in prevention and control of invasive species in China[J]. Journal of Biosafety, 2018, 27(1):16-19(in Chinese)
|
Turbelin A J, Malamud B D, Francis R A. Mapping the global state of invasive alien species:Patterns of invasion and policy responses[J]. Global Ecology and Biogeography, 2017, 26(1):78-92
|
Juanes F. Visual and acoustic sensors for early detection of biological invasions:Current uses and future potential[J]. Journal for Nature Conservation, 2018, 42:7-11
|
Jarić I, Heger T, Castro Monzon F, et al. Crypticity in biological invasions[J]. Trends in Ecology & Evolution, 2019, 34(4):291-302
|
Taberlet P, Coissac E, Hajibabaei M, et al. Environmental DNA[J]. Molecular Ecology, 2012, 21(8):1789-1793
|
Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples[J]. Biology Letters, 2008, 4(4):423-425
|
Doi H, Uchii K, Takahara T, et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys[J]. PLoS One, 2015, 10(3):e0122763
|
Zhang X W. Environmental DNA shaping a new era of ecotoxicological research[J]. Environmental Science & Technology, 2019, 53(10):5605-5612
|
李晗溪, 黄雪娜, 李世国, 等. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5):491-504
Li H X, Huang X N, Li S G, et al. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems[J]. Biodiversity Science, 2019, 27(5):491-504(in Chinese)
|
Deiner K, Bik H M, Mächler E, et al. Environmental DNA metabarcoding:Transforming how we survey animal and plant communities[J]. Molecular Ecology, 2017, 26(21):5872-5895
|
Jerde C L, Mahon A R, Chadderton W L, et al. "Sight-unseen" detection of rare aquatic species using environmental DNA[J]. Conservation Letters, 2011, 4(2):150-157
|
Piaggio A J, Engeman R M, Hopken M W, et al. Detecting an elusive invasive species:A diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA[J]. Molecular Ecology Resources, 2014, 14(2):374-380
|
Ardura A, Zaiko A, Martinez J L, et al. eDNA and specific primers for early detection of invasive species-A case study on the bivalve Rangia cuneata, currently spreading in Europe[J]. Marine Environmental Research, 2015, 112:48-55
|
Serrao N R, Steinke D, Hanner R H. Calibrating snakehead diversity with DNA barcodes:Expanding taxonomic coverage to enable identification of potential and established invasive species[J]. PLoS One, 2014, 9(6):e99546
|
Takahara T, Minamoto T, Doi H. Using environmental DNA to estimate the distribution of an invasive fish species in ponds[J]. PLoS One, 2013, 8(2):e56584
|
Goldberg C S, Sepulveda A, Ray A, et al. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum)[J]. Freshwater Science, 2013, 32(3):792-800
|
Nathan L M, Simmons M, Wegleitner B J, et al. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms[J]. Environmental Science & Technology, 2014, 48(21):12800-12806
|
Jo T, Fukuoka A, Uchida K, et al. Multiplex real-time PCR enables the simultaneous detection of environmental DNA from freshwater fishes:A case study of three exotic and three threatened native fishes in Japan[J]. Biological Invasions, 2020, 22(2):455-471
|
宋伦, 刘卫东, 吴景, 等. 有害甲藻Stoeckeria algicida在辽东湾的时空分布[J]. 生态学报, 2017, 37(4):1339-1345
Song L, Liu W D, Wu J, et al. Distribution of the toxic dinoflagellate Stoeckeria algicida in Liaodong Bay[J]. Acta Ecologica Sinica, 2017, 37(4):1339-1345(in Chinese)
|
Muha T P, Skukan R, Borrell Y J, et al. Contrasting seasonal and spatial distribution of native and invasive Codium seaweed revealed by targeting species-specific eDNA[J]. Ecology and Evolution, 2019, 9(15):8567-8579
|
von Ammon U, Wood S A, Laroche O, et al. Linking environmental DNA and RNA for improved detection of the marine invasive fanworm Sabella spallanzanii[J]. Frontiers in Marine Science, 2019, 6:621
|
Ardura A, Zaiko A, Borrell Y J, et al. Novel tools for early detection of a global aquatic invasive, the zebra mussel Dreissena polymorpha[J]. Aquatic Conservation:Marine and Freshwater Ecosystems, 2017, 27(1):165-176
|
Blackman R C, Ling K K S, Harper L R, et al. Targeted and passive environmental DNA approaches outperform established methods for detection of quagga mussels, Dreissena rostriformis bugensis in flowing water[J]. Ecology and Evolution, 2020, 10(23):13248-13259
|
马竹欣. 利用环境DNA技术调查入侵种克氏原螯虾在元阳梯田的分布[D]. 昆明:云南大学, 2016:33-34 Ma Z X. Distribution of invasive crayfish Procambarus clarkii in Yuanyang terrace revealed by eDNA[D]. Kunming:Yunnan University, 2016:33
-34(in Chinese)
|
Lin M X, Zhang S, Yao M. Effective detection of environmental DNA from the invasive American bullfrog[J]. Biological Invasions, 2019, 21(7):2255-2268
|
Brown E A, Chain F J J, Zhan A B, et al. Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports[J]. Diversity and Distributions, 2016, 22(10):1045-1059
|
Rey A, Basurko O C, Rodriguez-Ezpeleta N. Considerations for metabarcoding-based port biological baseline surveys aimed at marine nonindigenous species monitoring and risk assessments[J]. Ecology and Evolution, 2020, 10(5):2452-2465
|
Westfall K M, Therriault T W, Abbott C L. A new approach to molecular biosurveillance of invasive species using DNA metabarcoding[J]. Global Change Biology, 2020, 26(2):1012-1022
|
Chen J W, Chen Z, Liu S S, et al. Revealing an invasion risk of fish species in Qingdao underwater world by environmental DNA metabarcoding[J]. Journal of Ocean University of China, 2021, 20(1):124-136
|
Rey A, Carney K J, Quinones L E, et al. Environmental DNA metabarcoding:A promising tool for ballast water monitoring[J]. Environmental Science & Technology, 2019, 53(20):11849-11859
|
Ardura A, Borrell Y, Fernández S, et al. Nuisance algae in ballast water facing international conventions. Insights from DNA metabarcoding in ships arriving in bay of Biscay[J]. Water, 2020, 12(8):2168
|
Lin Y, Zhan A, Hernandez M R, et al. Can chlorination of ballast water reduce biological invasions?[J]. Journal of Applied Ecology, 2019, 57(2):331-343
|
Barnes M A, Turner C R. The ecology of environmental DNA and implications for conservation genetics[J]. Conservation Genetics, 2016, 17(1):1-17
|
Goldberg C S, Turner C R, Deiner K, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species[J]. Methods in Ecology and Evolution, 2016, 7(11):1299-1307
|
Harper L R, Buxton A S, Rees H C, et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds[J]. Hydrobiologia, 2019, 826(1):25-41
|
Strickland G J, Roberts J H. Utility of eDNA and occupancy models for monitoring an endangered fish across diverse riverine habitats[J]. Hydrobiologia, 2019, 826(1):129-144
|
张丽娟, 徐杉, 赵峥, 等. 环境DNA宏条形码监测湖泊真核浮游植物的精准性[J]. 环境科学, 2021, 42(2):796-807
Zhang L J, Xu S, Zhao Z, et al. Precision of eDNA metabarcoding technology for biodiversity monitoring of eukaryotic phytoplankton in lakes[J]. Environmental Science, 2021, 42(2):796-807(in Chinese)
|
Zhang Y, Pavlovska M, Stoica E, et al. Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach:From bacteria to marine mammals[J]. Environment International, 2020, 135:105307
|
Stoof-Leichsenring K R, Dulias K, Biskaborn B K, et al. Lake-depth related pattern of genetic and morphological diatom diversity in boreal Lake Bolshoe Toko, Eastern Siberia[J]. PLoS One, 2020, 15(4):e0230284
|
Minamoto T, Naka T, Moji K, et al. Techniques for the practical collection of environmental DNA:Filter selection, preservation, and extraction[J]. Limnology, 2016, 17(1):23-32
|
Shu L, Ludwig A, Peng Z G. Standards for methods utilizing environmental DNA for detection of fish species[J]. Genes, 2020, 11(3):296
|
杨江华. 太湖流域浮游动物物种多样性与环境污染群落生态效应研究[D]. 南京:南京大学, 2017:50-68 Yang J H. Biodiversity of zooplankton and community effects of environmental pollution in Tai lake basin[D]. Nanjing:Nanjing University, 2017:50
-68(in Chinese)
|
Kumar G, Eble J E, Gaither M R. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA[J]. Molecular Ecology Resources, 2020, 20(1):29-39
|
Piper A M, Batovska J, Cogan N O I, et al. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance[J]. GigaScience, 2019, 8(8):giz092
|
Song H, Buhay J E, Whiting M F, et al. Many species in one:DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified[J]. PNAS, 2008, 105(36):13486-13491
|
Piñol J, Mir G, Gomez-Polo P, et al. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods[J]. Molecular Ecology Resources, 2015, 15(4):819-830
|
李小闯, 霍守亮, 张含笑, 等. 环境DNA宏条形码技术在蓝藻群落监测中的应用[J]. 环境科学研究, 2021, 34(2):372-381
Li X C, Huo S L, Zhang H X, et al. Applications of environmental DNA metabarcoding in monitoring of cyanobacterial community[J]. Research of Environmental Sciences, 2021, 34(2):372-381(in Chinese)
|
Li X C, Yang Y M, Cai F F, et al. New insights into the taxonomy of the genus Sphaerospermopsis (Nostocales, Cyanobacteria) with the description of Sphaerospermopsis crassa sp. Nov[J]. Phycologia, 2017, 56(2):147-158
|
Hebert P D N, Ratnasingham S, DeWaard J R. Barcoding animal life:Cytochrome C oxidase subunit 1 divergences among closely related species[J]. Proceedings Biological Sciences, 2003, 270(Suppl.1):S96-S99
|
Leray M, Yang J Y, Meyer C P, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity:Application for characterizing coral reef fish gut contents[J]. Frontiers in Zoology, 2013, 10:34
|
Avó A P, Daniell T J, Neilson R, et al. DNA barcoding and morphological identification of benthic nematodes assemblages of estuarine intertidal sediments:Advances in molecular tools for biodiversity assessment[J]. Frontiers in Marine Science, 2017, 4:66
|
Aglieri G, Baillie C, Mariani S, et al. Environmental DNA effectively captures functional diversity of coastal fish communities[J]. Molecular Ecology, 2021, 30(13):3127-3139
|
Xiang X L, Xi Y L, Wen X L, et al. Patterns and processes in the genetic differentiation of the Brachionus calyciflorus complex, a passively dispersing freshwater zooplankton[J]. Molecular Phylogenetics and Evolution, 2011, 59(2):386-398
|
Brannock P M, Ortmann A C, Moss A G, et al. Metabarcoding reveals environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes[J]. Molecular Ecology, 2016, 25(15):3593-3604
|
Zhan A B, Bailey S A, Heath D D, et al. Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities[J]. Molecular Ecology Resources, 2014, 14(5):1049-1059
|
马鸿娟, Stewart Kathryn, 马利民, 等. 环境DNA及其在水生生态系统保护中的应用[J]. 生态学杂志, 2016, 35(2):516-523
Ma H J, Kathryn S, Ma L M, et al. Environmental DNA and its application in protecting aquatic ecosystems[J]. Chinese Journal of Ecology, 2016, 35(2):516-523(in Chinese)
|
陈炼, 吴琳, 刘燕, 等. 环境DNA metabarcoding及其在生态学研究中的应用[J]. 生态学报, 2016, 36(15):4573-4582
Chen L, Wu L, Liu Y, et al. Application of environmental DNA metabarcoding in ecology[J]. Acta Ecologica Sinica, 2016, 36(15):4573-4582(in Chinese)
|
李苗, 单秀娟, 王伟继, 等. 中国对虾生物量评估的环境DNA检测技术的建立及优化[J]. 渔业科学进展, 2019, 40(1):12-19
Li M, Shan X J, Wang W J, et al. Establishment and optimization of environmental DNA detection techniques for assessment of Fenneropenaeus chinensis biomass[J]. Progress in Fishery Sciences, 2019, 40(1):12-19(in Chinese)
|
秦传新, 左涛, 于刚, 等. 环境DNA在水生生态系统生物量评估中的研究进展[J]. 南方水产科学, 2020, 16(5):123-128
|
Scott R, Zhan A B, Brown E A, et al. Optimization and performance testing of a sequence processing pipeline applied to detection of nonindigenous species[J]. Evolutionary Applications, 2018, 11(6):891-905
|
Callahan B J, McMurdie P J, Holmes S P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis[J]. The ISME Journal, 2017, 11(12):2639-2643
|
Marshall N T, Stepien C A. Invasion genetics from eDNA and thousands of larvae:A targeted metabarcoding assay that distinguishes species and population variation of zebra and quagga mussels[J]. Ecology and Evolution, 2019, 9(6):3515-3538
|
Duarte S, Vieira P E, Lavrador A S, et al. Status and prospects of marine NIS detection and monitoring through (e)DNA metabarcoding[J]. Science of the Total Environment, 2021, 751:141729
|
Weigand H, Beermann A J, Čiampor F, et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe:Gap-analysis and recommendations for future work[J]. Science of the Total Environment, 2019, 678:499-524
|
李飞龙, 杨江华, 杨雅楠, 等. 环境DNA宏条形码监测水生态系统变化与健康状态[J]. 中国环境监测, 2018, 34(6):37-46
Li F L, Yang J H, Yang Y N, et al. Using environmental DNA metabarcoding to monitor the changes and health status of aquatic ecosystems[J]. Environmental Monitoring in China, 2018, 34(6):37-46(in Chinese)
|
Sepulveda A J, Nelson N M, Jerde C L, et al. Are environmental DNA methods ready for aquatic invasive species management?[J]. Trends in Ecology & Evolution, 2020, 35(8):668-678
|
Zhou X, Li Y Y, Liu S L, et al. Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification[J]. GigaScience, 2013, 2(1):2047
|