Jack D B, Gaarn H B, Johansson S, et al. Technical guidance document on risk assessment. Part 1. Part 2[R]. Brussels: European Commission, 2002
贺莹莹, 李雪花, 陈景文. 多介质环境模型在化学品暴露评估中的应用与展望[J]. 科学通报, 2014, 59(32): 3130-3143 He Y Y, Li X H, Chen J W. Use of multimedia environmental models in chemical exposure assessments[J]. Chinese Science Bulletin, 2014, 59(32): 3130-3143(in Chinese)
MacKay D, MacLeod M. Multimedia environmental models[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2002, 6(2): 63-69
MacLeod M, Woodfine D G, MacKay D, et al. BETR North America: A regionally segmented multimedia contaminant fate model for North America[J]. Environmental Science and Pollution Research International, 2001, 8(3): 156-163
MacKay D, Reid L. Local and distant residence times of contaminants in multi-compartment models. Part I: A review of the theoretical basis[J]. Environmental Pollution, 2008, 156(3): 1196-1203
Toose L, Woodfine D G, MacLeod M, et al. BETR-World: A geographically explicit model of chemical fate: Application to transport of alpha-HCH to the Arctic[J]. Environmental Pollution, 2004, 128(1-2): 223-240
张少轩, 张冰, 张芊芊, 等. 化学品环境归趋模型及应用[J]. 环境化学, 2019, 38(8): 1684-1707 Zhang S X, Zhang B, Zhang Q Q, et al. Chemical environmental fate models and their applications[J]. Environmental Chemistry, 2019, 38(8): 1684-1707(in Chinese)
Suzuki N, Murasawa K, Sakurai T, et al. Geo-referenced multimedia environmental fate model (G-CIEMS): Model formulation and comparison to the generic model and monitoring approaches[J]. Environmental Science & Technology, 2004, 38(21): 5682-5693
Feijtel T, Boeije G, Matthies M, et al. Development of a geography-referenced regional exposure assessment tool for European Rivers—GREAT-ER[J]. Journal of Hazardous Materials, 1998, 61(1-3): 59-65
Feijtel T, Boeije G, Matthies M, et al. Development of a geography-referenced regional exposure assessment tool for European Rivers—GREAT-ER[J]. Journal of Hazardous Materials, 1998, 61(1-3): 59-65
Koormann F, Rominger J, Schowanek D, et al. Modeling the fate of down-the-drain chemicals in rivers: An improved software for GREAT-ER[J]. Environmental Modelling & Software, 2006, 21(7): 925-936
Kehrein N, Berlekamp J, Klasmeier J. Modeling the fate of down-the-drain chemicals in whole watersheds: New version of the GREAT-ER software[J]. Environmental Modelling & Software, 2015, 64: 1-8
Webster E, MacKay D, Di Guardo A, et al. Regional differences in chemical fate model outcome[J]. Chemosphere, 2004, 55(10): 1361-1376
青达罕, 许宜平, 王子健. 基于环境逸度模型的化学物质暴露与风险评估研究进展[J]. 生态毒理学报, 2018, 13(6): 13-29 Qing D H, Xu Y P, Wang Z J. The evolution of environmental fugacity models on chemical exposure and risk assessment[J]. Asian Journal of Ecotoxicology, 2018, 13(6): 13-29(in Chinese)
Grill G, Khan U, Lehner B, et al. Risk assessment of down-the-drain chemicals at large spatial scales: Model development and application to contaminants originating from urban areas in the Saint Lawrence River Basin[J]. The Science of the Total Environment, 2016, 541: 825-838
Xu L Y, Song H M, Wang Y, et al. Assessment of industry-induced urban human health risks related to benzo[a]pyrene based on a multimedia fugacity model: Case study of Nanjing, China[J]. International Journal of Environmental Research and Public Health, 2015, 12(6): 6162-6178
傅明珠, 李正炎, 石金辉, 等. 壬基酚的内分泌干扰作用和环境分布特征[J]. 海洋湖沼通报, 2005(4): 45-52 Fu M Z, Li Z Y, Shi J H, et al. Endocrine-disrupting properties and environmental distribution characteristics of nonylphenols[J]. Transaction of Oceanology and Limnology, 2005 (4): 45-52(in Chinese)
Arslan O C, Parlak H. Embryotoxic effects of nonylphenol and octylphenol in sea urchin Arbacia lixula[J]. Ecotoxicology, 2007, 16(6): 439-444
Kuo C C, Kuo D H, Huang C J, et al. Nonylphenol-induced apoptotic pathways in SCM1 human gastric cancer cells[J]. Drug Development Research, 2010, 71(2): 139-148
Ren L, Marquardt M A, Lech J J. Estrogenic effects of nonylphenol on pS2, ER and MUC1 gene expression in human breast cancer cells-MCF-7[J]. Chemico-Biological Interactions, 1997, 104(1): 55-64
Ardeshir R A, Rastgar S, Salati A P, et al. The effect of nonylphenol exposure on the stimulation of melanomacrophage centers, estrogen and testosterone level, and ERα gene expression in goldfish[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2022, 254: 109270
孟耀斌, 李想, 宋昊政, 等. 环境系统模拟中化学物质的土壤行为模拟方法: CN113654943A[P]. 2022-04-22
孟耀斌, 李想, 龙清风. 化学物质环境暴露模拟模型SWAT-KM技术文档及使用手册[R]. 北京: 北京师范大学, 2022: 24-186 Meng Y B, Li X, Long Q F. SWAT-KM Technical Document and User Manual of Chemical Environmental Exposure Simulation Model[M]. Beijing: Beijing Normal University, 2022: 24 -186(in Chinese)
Neitsch S L, Arbold J G, Kinry J R, et al. Soil and water assessment tool theoretical documentation[R]. Temple: Texas Water Resources Institute, 2011
Harkey G A, van Hoof P L, Landrum P F. Bioavailability of polycyclic aromatic hydrocarbons from a historically contaminated sediment core[J]. Environmental Toxicology and Chemistry, 1995, 14(9): 1551-1560
陈凯麟, 江春波. 地表水环境影响评价数值模拟方法及应用[M]. 北京: 中国环境出版集团, 2018: 48-135
Brusseau M L, Reid M E. Nonequilibrium sorption of organic chemicals by low organic-carbon aquifer materials[J]. Chemosphere, 1991, 22(3-4): 341-350
Birdwell J, Cook R L, Thibodeaux L J. Desorption kinetics of hydrophobic organic chemicals from sediment to water: A review of data and models[J]. Environmental Toxicology and Chemistry, 2007, 26(3): 424-434
孟耀斌, 李想, 宋昊政. 化学物质环境系统行为模拟中大气行为的简化模拟方法: CN113704954A[P]. 2022-08-26
Seibert P, Beyrich F, Gryning S E, et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1001-1027
Laakso L, Grönholm T, Rannik V, et al. Ultrafine particle scavenging coefficients calculated from 6 years field measurements[J]. Atmospheric Environment, 2003, 37(25): 3605-3613
Zhang L M, Gong S L, Padro J, et al. A size-segregated particle dry deposition scheme for an atmospheric aerosol module[J]. Atmospheric Environment, 2001, 35(3): 549-560
Hirabayashi S, Kroll C N, Nowak D J. Component-based development and sensitivity analyses of an air pollutant dry deposition model[J]. Environmental Modelling & Software, 2011, 26(6): 804-816
Hsu F C, Marxmiller R L, Yang A Y S. Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique[J]. Plant Physiology, 1990, 93(4): 1573-1578
孟耀斌. 化学物质环境系统模拟中与植物相关的行为模拟: CN113654950B[P]. 2022-11-11
中国科学院计算机网络信息中心. 地理空间数据云[DB/OL].[2022-04-10]. http://www.gscloud.cn/
中国科学院地理科学与资源研究所. 中国科学院资源环境科学与数据中心[DB/OL].[2022-04-10]. https://www.resdc.cn/
中国科学院中国科学院南京土壤研究所. 土壤科学数据库[DB/OL].[2022-04-10]. http://www.issas.ac.cn/
Meng X Y, Wang H. Significance of the China meteorological Assimilation Driving Datasets for the SWAT model (CMADS) of East Asia[J]. Water, 2017, 9(10): 765-770
Meng X Y, Wang H, Chen J. Profound impacts of the China meteorological assimilation driving datasets for the SWAT model (CMADS)[J]. Water, 2019, 11(4): 832-843
中华人民共和国水利部水文局, 中华人民共和国水文年鉴[M]. 北京: 中国水利水电出版社, 2021: 160-181 Hydrological Bureau of the Ministry of Water Resources of the People's Republic of China, Hydrological Yearbook of the People's Republic of China[M]. Beijing: China Water Resources and Hydropower Press, 2021: 160 -181(in Chinese)
Environment Ministry. Reference materials for nonylphenol and nonylphenol ethoxylates[R]. Tokyo: Environment Ministry 2013: 13
Winchell M. ArcSWAT 2009用户指南[M]. 郑州: 黄河水利出版社, 2012: 36-184
尹志杰, 王容, 李磊, 等. 长江流域“2017·07”暴雨洪水分析[J]. 水文, 2019, 39(2): 86-91 Yin Z J, Wang R, Li L, et al. Analysis of storm flood occurred in the Yangtze River Basin in July, 2017[J]. Journal of China Hydrology, 2019, 39(2): 86-91(in Chinese)
周海天, 王海波. 盐城市2018年梅雨期暴雨洪水分析[J]. 水利技术监督, 2020, 28(1): 139-142 Zhou H T, Wang H B. Analysis of rainstorm and flood in 2018 Meiyu period of Yancheng City[J]. Technical Supervision in Water Resources, 2020, 28(1): 139-142(in Chinese)
陈博, 李新峰. 2018年第18号台风“温比亚”引发大范围暴雨过程的诊断分析[J]. 民航学报, 2019, 3(4): 28-34 Chen B, Li X F. The diagnostic analysis of a large-scale rainstorm process caused by typhoon Rumbia (1818)[J]. Journal of Civil Aviation, 2019, 3(4): 28-34(in Chinese)
Moriasi D N, Gitau M W, Pai N, et al. Hydrologic and water quality models: Performance measures and evaluation criteria[J]. Transactions of the Asabe, 2015, 58(6): 1763-1785
Brooke L, Thursby G B. Ambient Aquatic Life Water Quality Criteria, Nonylphenol: Final[R]. Washington DC: United States Environmental Protection Agency, Office of Water, 2005
高培. 壬基酚的水质基准探讨和生态风险评价[D]. 青岛: 中国海洋大学, 2014: 17-29 Gao P. Derivation of water quality criteria for nonylphenol and its application in ecological risk assessment[D]. Qingdao: Ocean University of China, 2014: 17 -29(in Chinese)
田军林, 郝守宁. 面源污染估算模型研究进展[J]. 中国农学通报, 2022, 38(11): 111-115 Tian J L, Hao S N. Research progress of non-point source pollution estimation model[J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 111-115(in Chinese)
尹雄锐, 夏军, 张翔, 等. 水文模拟与预测中的不确定性研究现状与展望[J]. 水力发电, 2006, 32(10): 27-31 Yin X R, Xia J, Zhang X, et al. Recent progress and prospect of the study on uncertainties in hydrological modelling and forecasting[J]. Water Power, 2006, 32(10): 27-31(in Chinese)