首页 | 期刊简介 | 编委会 | 投稿要求 | 化学品管理信息动态 | 学术会议 | 专辑 | 毒理学测试技术设备 | 订购本刊 | 联系我们 | English version

王贺威,马胜伟,张喆,陈海刚,等. 全氟辛烷磺酸盐(PFOS)胁迫对翡翠贻贝抗氧化酶的影响[J]. 生态毒理学报, 2012, 7(5): 508-516
全氟辛烷磺酸盐(PFOS)胁迫对翡翠贻贝抗氧化酶的影响
Effects of Perfluorooctane Sulfonate (PFOS) Exposure on the Antioxidant Enzymes of Perna viridis
投稿时间:2011-11-30  修订日期:2012-03-02
DOI:
中文关键词:  翡翠贻贝  全氟辛烷磺酸钾  超氧化物歧化酶 (SOD)  谷胱甘肽 (GSH)  丙二醛(MDA)
英文关键词:Perna viridis  perfluorooctane sulfonate potassium  superoxide dismutase (SOD)  glutathione (GSH)  malondialdehye (MDA)
基金项目:广东省科技计划项目(2009B030600001);广东省渔业生态环境重点实验室重点开放课题(GDKL2010--001);中央级公益性科研院所基本科研业务费专项资金项目(2009YD01、2010YD04、2010TS12);广东省科技计划项目(2011A060902006)
作者单位
王贺威 1. 中国水产科学研究院南海水产研究所 广东省渔业生态环境重点实验室 农业部南海渔业资源环境重点野外科学观测实验站广州 510300
2. 上海海洋大学海洋科学学院
上海 210306 
马胜伟 中国水产科学研究院南海水产研究所 广东省渔业生态环境重点实验室 农业部南海渔业资源环境重点野外科学观测实验站广州 510300 
张喆 中国水产科学研究院南海水产研究所 广东省渔业生态环境重点实验室 农业部南海渔业资源环境重点野外科学观测实验站广州 510300 
陈海刚 中国水产科学研究院南海水产研究所 广东省渔业生态环境重点实验室 农业部南海渔业资源环境重点野外科学观测实验站广州 510300 
黄志斐 1. 中国水产科学研究院南海水产研究所 广东省渔业生态环境重点实验室 农业部南海渔业资源环境重点野外科学观测实验站广州 510300
2. 上海海洋大学海洋科学学院
上海 210306 
巩秀玉 1.中国水产科学研究院南海水产研究所 广东省渔业生态环境重点实验室 农业部南海渔业资源环境重点野外科学观测实验站广州 510300
2.上海海洋大学水产与生命学院
上海 210306 
蔡文贵 中国水产科学研究院南海水产研究所 广东省渔业生态环境重点实验室 农业部南海渔业资源环境重点野外科学观测实验站广州 510300 
贾晓平 中国水产科学研究院南海水产研究所 广东省渔业生态环境重点实验室 农业部南海渔业资源环境重点野外科学观测实验站广州 510300 
摘要点击次数: 2688
全文下载次数: 1087
中文摘要:
      为了解全氟辛烷磺酸盐(PFOS)对海洋贝类抗氧化防御系统的毒性效应及致毒机理,在实验室条件下研究了PFOS对翡翠贻贝的96 h急性毒性,同时探讨PFOS胁迫和净水恢复过程中翡翠贻贝外套膜和内脏团组织中抗氧化指标(SOD活性、GSH和MDA含量)的变化。结果显示,PFOS对翡翠贻贝的96 h半致死浓度(LC50)为68.3 mg·L-1,安全浓度为6.83 mg·L-1。在PFOS胁迫阶段,1 mg·L-1浓度组外套膜SOD活性显著性升高(p<0.05),内脏团SOD酶活性显著降低(p<0.05);而PFOS浓度高于1 mg·L-1时,外套膜SOD活性显著性降低(p<0.05),内脏团SOD活性显著升高(p<0.05)。PFOS胁迫对翡翠贻贝外套膜和内脏团中GSH含量均有显著的诱导作用(p<0.05),PFOS胁迫15 d后各浓度组GSH含量均受到显著的抑制(p<0.05)。翡翠贻贝外套膜MDA含量受PFOS胁迫后显著升高(p<0.05),内脏团MDA含量的变化呈先降低、后升高的规律。净水释放阶段,翡翠贻贝两组织中SOD活性在释放7 d后均恢复至对照组水平,GSH含量和MDA含量呈显著升高的趋势(p<0.05)。研究结果表明,PFOS暴露能够引起翡翠贻贝外套膜和内脏团氧化胁迫,但这种损伤的效果不明显,释放短时间后即可自我恢复。
                       
AuthorAffiliation
Wang Hewei1. Key Lab of Fishery Ecology and Environment, Guangdong Province, Key Field Observational and Experimental Station for Fisheries Resources and Environment of South China Sea, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
2. College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
Ma ShengweiKey Lab of Fishery Ecology and Environment, Guangdong Province, Key Field Observational and Experimental Station for Fisheries Resources and Environment of South China Sea, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
Zhang ZheKey Lab of Fishery Ecology and Environment, Guangdong Province, Key Field Observational and Experimental Station for Fisheries Resources and Environment of South China Sea, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
Chen HaigangKey Lab of Fishery Ecology and Environment, Guangdong Province, Key Field Observational and Experimental Station for Fisheries Resources and Environment of South China Sea, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
Huang Zhifei1. Key Lab of Fishery Ecology and Environment, Guangdong Province, Key Field Observational and Experimental Station for Fisheries Resources and Environment of South China Sea, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
2. College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
Gong Xiuyu1. Key Lab of Fishery Ecology and Environment, Guangdong Province, Key Field Observational and Experimental Station for Fisheries Resources and Environment of South China Sea, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
Cai WenguiKey Lab of Fishery Ecology and Environment, Guangdong Province, Key Field Observational and Experimental Station for Fisheries Resources and Environment of South China Sea, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
Jia XiaopingKey Lab of Fishery Ecology and Environment, Guangdong Province, Key Field Observational and Experimental Station for Fisheries Resources and Environment of South China Sea, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
英文摘要:
      To understand the toxic effect and mechanism of perfluorooctane sulfonate (PFOS) on antioxidant defense system of marine shellfish, the laboratory experiment was conducted with 96 h acute toxicity test and the semi-static toxicity test. The results showed that 96 h-LC50values of PFOS on Perna viridis was 68.3 mg·L-1,and the safe concentration of PFOS on Perna viridis was 6.83 mg·L-1. After the PFOS exposure of Perna viridis, superoxide dismutase (SOD) activities increased in mantle and decreased in visceral significantly at the concentration of 1 mg·L-1 (p<0.05), which decreased in mantle and increased in visceral with the increasing concentration of PFOS (p<0.05). Glutathione (GSH) content in mantle and visceral of Perna viridis was significantly induced compared with the control (p<0.05), with the increasing exposure time, which was inhibited in each group after 15 d exposure of PFOS (p<0.05). Malondialdehye (MDA) content in mantle increased significantly during the period of exposure of PFOS; while MDA content in visceral decreased firstly and then increased during the stress stage of PFOS. During the phase of recovery with clear seawater, SOD activities recovered to the same level with control group, however, there was a rising tendency for all the content of GSH and MDA in 2 tissues of Perna viridis after 7-days recovery (p<0.05). The results showed that PFOS exposure could cause oxidative stress on mantle and visceral of Perna viridis, however, the stress compressed by PFOS could be recovered quickly after a short period release of PFOS .
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第5060639位访问者   京ICP备 09058833 号

主办单位:中国科学院生态环境研究中心     单位地址:北京市海淀区双清路18号

 服务热线:010-62941072       传真:010-62923563       邮编:100085    Email: stdlxb@rcees.ac.cn

    本系统由北京勤云科技发展有限公司设计

0463美女美女3764美女美女ktv