太湖入湖河流中精神活性物质污染特征与生态风险

邓洋慧, 郭昌胜, 殷行行, 裴莹莹, 陈力可, 金小伟, 吴代赦, 徐建. 太湖入湖河流中精神活性物质污染特征与生态风险[J]. 生态毒理学报, 2020, 15(1): 119-130. doi: 10.7524/AJE.1673-5897.20191027001
引用本文: 邓洋慧, 郭昌胜, 殷行行, 裴莹莹, 陈力可, 金小伟, 吴代赦, 徐建. 太湖入湖河流中精神活性物质污染特征与生态风险[J]. 生态毒理学报, 2020, 15(1): 119-130. doi: 10.7524/AJE.1673-5897.20191027001
Deng Yanghui, Guo Changsheng, Yin Xingxing, Pei Yingying, Chen Like, Jin Xiaowei, Wu Daishe, Xu Jian. Pollution Characteristics and Ecological Risks of Psychoactive Substances in Rivers Entering Taihu Lake[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 119-130. doi: 10.7524/AJE.1673-5897.20191027001
Citation: Deng Yanghui, Guo Changsheng, Yin Xingxing, Pei Yingying, Chen Like, Jin Xiaowei, Wu Daishe, Xu Jian. Pollution Characteristics and Ecological Risks of Psychoactive Substances in Rivers Entering Taihu Lake[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 119-130. doi: 10.7524/AJE.1673-5897.20191027001

太湖入湖河流中精神活性物质污染特征与生态风险

    作者简介: 邓洋慧(1993-),女,硕士研究生,研究方向为环境污染化学,E-mail:1306535971@qq.com
  • 基金项目:

    国家水体污染控制与治理科技重大专项(2017ZX07302001,2017ZX07301005);国家自然科学基金资助项目(41673120)

  • 中图分类号: X171.5

Pollution Characteristics and Ecological Risks of Psychoactive Substances in Rivers Entering Taihu Lake

  • Fund Project:
  • 摘要: 精神活性物质是一类摄入人体后对中枢神经系统具有强烈兴奋或抑制作用的新型污染物,其在水环境中的存在可能对水生生物、水生态系统甚至人体健康产生潜在的危害。为评价太湖中精神活性物质的污染水平和生态风险,利用超高效液相色谱-质谱联用法检测了太湖19条入湖河流中13种典型精神活性物质的质量浓度和空间分布规律。结果表明,在太湖19条入湖河流中除苯甲酰牙子碱(BE)和去甲氯胺酮(NK)外,其余11种目标物均有检出,质量浓度范围为n.d.~43.2 ng·L-1。其中麻黄碱(EPH)的检出率和中间浓度最高,分别为100%和11.0 ng·L-1;其次为甲基苯丙胺(METH),检出频率为58%,浓度中值为1.0 ng·L-1;苯丙胺(AMP)在东部湖区均未检出。大部分精神活性物质浓度水平较高的河流分布在竺山湾和西太湖,而海洛因(HR)的高值区主要在南太湖。运用风险熵方法对其进行风险评估,结果显示,太湖流域地表水中检出的13种精神活性物质的风险熵值均<0.1,生态风险较低,但其对水生生态系统的长期和综合风险值得关注。
  • 加载中
  • The United Nations Office on Drugs and Crime (UNDC). World drug report 2014[R]. Vienna:UNDC, 2014
    Zuccato E, Castiglioni S, Bagnati R, et al. Illicit drugs, a novel group of environmental contaminants[J]. Water Research, 2008, 42(4-5):961-968
    Postigo C, Lopez de Alda M J, Barceló D. Fully automated determination in the low nanogram per liter level of different classes of drugs of abuse in sewage water by online solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry[J]. Analytical Chemistry, 2008, 80(9):3123-3134
    Pal R, Megharaj M, Kirkbride K P, et al. Illicit drugs and the environment:A review[J]. Science of the Total Environment, 2013, 463:1079-1092
    Postigo C, Lopez de Alda M J, Barceló D. Drugs of abuse and their metabolites in the Ebro River basin:Occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation[J]. Environment International, 2010, 36(1):75-84
    Evgenidou E N, Konstantinou I K, Lambropoulou D A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters:A review[J]. Science of the Total Environment, 2015, 505:905-926
    Zuccato E, Castiglioni S, Bagnati R, et al. Cocaine in surface waters:A new evidence-based tool to monitor community drug abuse[J]. Environmental Health:A Global Access Science Source, 2005, 4(1):1-7
    Van Nujis A L, Pecceu B, Theunis L, et al. Spatial and temporal variations in the occurrence of cocaine and benzoylecgonine in waste-and surface water from Belgium and removal during wastewater treatment[J]. Water Research, 2009, 43(5):1341-1349
    Li K, Du P, Xu Z, et al. Occurrence of illicit drugs in surface waters in China[J]. Environmental Pollution, 2016, 213:395-402
    Mastroianni N, Bleda M J, López de Alda M J, et al. Occurrence of drugs of abuse in surface water from four Spanish river basins:Spatial and temporal variations and environmental risk assessment[J]. Journal of Hazardous Materials, 2016, 316:134-142
    Wang D G, Zhang Q D, Wang X P, et al. Illicit drugs and their metabolites in 36 rivers that drain into the Bohai Sea and north Yellow Sea, north China[J]. Environmental Science and Pollution Research, 2016, 23(16):16495-16503
    Van der Aa M, Bijlsma L, Emke E, et al. Risk assessment for drugs of abuse in the Dutch watercycle[J]. Water Research, 2013, 47(5):1848-1857
    Bartelt-Hunt S L, Snow D D, Damon T, et al. The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska[J]. Environmental Pollution, 2009, 157(3):786-791
    Baker D R, Kasprzyk-Hordern B. Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography-positive electrospray ionisation tandem mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(12):1620-1631
    Mendoza A, Zonja B, Mastroianni N, et al. Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region (Central Spain):A case study to analyse their occurrence and human health risk characterization[J]. Environment International, 2016, 86:107-118
    van Nuijs A L N, Castiglioni S, Tarcomnicu I, et al. Illicit drug consumption estimations derived from wastewater analysis:A critical review[J]. Science of the Total Environment, 2011, 409(19):3564-3577
    Li J, Hou L L, Du P, et al. Estimation of amphetamine and methamphetamine uses in Beijing through sewagebased analysis[J]. Science of the Total Environment, 2014, 490:724-732
    Du P, Li K Y, Li J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology[J]. Water Research, 2015, 84:76-84
    Lin A Y C, Wang X H, Lin C. Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters[J]. Chemosphere, 2010, 81(5):562-570
    Jiang J J, Lee C L, Fang M D. Emerging organic contaminants in coastal waters:Anthropogenic impact, environmental release and ecological risk[J]. Marine Pollution Bulletin, 2014, 85(2):391-399
    杜鹏.中国主要城市毒品滥用的污水流行病学研究[D].北京:北京大学, 2016:33-96 Du P. Illicit drug uses in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology[D]. Beijing:Peking University, 2016:33

    -96(in Chinese)

    Gonzalez-Marino I, Gracia-Lor E, Rousis N I, et al. Wastewater-based epidemiology to monitor synthetic cathinones use in different European countries[J]. Environmental Science & Technology, 2016, 50(18):10089-10096
    Mendoza A, Rodríguez-Gil J L, González-Alonso S, et al. Drugs of abuse and benzodiazepines in the Madrid Region (Central Spain):Seasonal variation in river waters, occurrence in tap water and potential environmental and human risk[J]. Environment International, 2014, 70:76-87
    Lin Y C, Lee W N, Wang X H. Ketamine and the metabolite norketamine:persistence and photo transformation toxicity in hospital wastewater and surface water[J]. Water Research, 2014, 53(8):351-360
    Fernandez-Fontaina E, Omil F, Lema J M, et al. Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants[J]. Water Research, 2012, 46(16):5434-5444
    Lai F Y, Bruno R, Leung H W, et al. Estimating daily and diurnal variations of illicit drug use in Hong Kong:A pilot study of using wastewater analysis in an Asian metropolitan city[J]. Forensic Science International, 2013, 233(1-3):126-132
    Gao T, Du P, Xu Z, et al. Occurrence of new psychoactive substances in wastewater of major Chinese cities[J]. Science of the Total Environment, 2017, 575:963-969
    Jekel M, Dott W, Bergmann A, et al. Selection of organic process and source indicator substances for the anthropogenically influenced water cycle[J]. Chemosphere, 2015, 125:155-167
    Volpe D A, Xu Y, Sahajwalla C G, et al. Methadone metabolism and drug-drug interactions:in vitro and in vivo literature review[J]. Journal of Pharmaceutical Sciences, 2018, 107(12):2983-2991
    Boleda M A R, Galceran M A T, Ventura F. Monitoring of opiates, cannabinoids and their metabolites in wastewater, surface water and finished water in Catalonia, Spain[J]. Water Research, 2009, 43(4):1126-1136
    Martínez Bueno M J, Uclés S, Hernando M D, et al. Development of a solvent-free method for the simultaneous identification/quantification of drugs of abuse and their metabolites in environmental water by LC-MS/MS[J].Talanta, 2011, 85(1):157-166
    Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. Multiresidue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solidphase extraction and ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry[J]. Journal of Chromatography A, 2007, 1161(1-2):132-145
    陈玫宏,郭敏,刘丹,等.典型内分泌干扰物在太湖及其支流水体和沉积物中的污染特征[J].中国环境科学, 2017, 37(11):4323-4332

    Chen M H, Guo M, Liu D, et al. Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries[J]. China Environmental Science, 2017, 37(11):4323-4332(in Chinese)

    Zhang Z X, Roman G C, Zhen H, et al. Parkinson's disease in China:Prevalence in Beijing, Xian, and Shanghai[J]. The Lancet, 2005, 365(9459):595-597
    Mcleod G A. Pharmacology for Anaesthesia and Intensive Care[M]. Cambridge:Cambridge University Press, 2008:186-187
    Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2):334-342
    Sanderson H, Johnson D J, Reitsma T, et al. Ranking and prioritization of environmental risks of pharmaceuticals in surface waters[J]. Regulatory Toxicology and Pharmacology, 2004, 39(2):158-183
    Lilius H, Isomaa B, Holmström T. A comparison of the toxicity of 50 reference chemicals to freshly isolated rainbow trout hepatocytes and Daphnia magna[J]. Aquatic Toxicology, 1994, 30(1):47-60
  • 加载中
计量
  • 文章访问数:  2975
  • HTML全文浏览数:  2975
  • PDF下载数:  69
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-27

太湖入湖河流中精神活性物质污染特征与生态风险

    作者简介: 邓洋慧(1993-),女,硕士研究生,研究方向为环境污染化学,E-mail:1306535971@qq.com
  • 1. 南昌大学资源环境与化工学院, 鄱阳湖环境与资源利用教育部重点实验室, 南昌 330031;
  • 2. 中国环境科学研究院, 环境健康风险评估与研究中心, 北京 100012;
  • 3. 中国环境科学研究院, 国家环境保护化学品生态效应与风险评估重点实验室, 北京 100012;
  • 4. 中国环境监测总站, 北京100012
基金项目:

国家水体污染控制与治理科技重大专项(2017ZX07302001,2017ZX07301005);国家自然科学基金资助项目(41673120)

摘要: 精神活性物质是一类摄入人体后对中枢神经系统具有强烈兴奋或抑制作用的新型污染物,其在水环境中的存在可能对水生生物、水生态系统甚至人体健康产生潜在的危害。为评价太湖中精神活性物质的污染水平和生态风险,利用超高效液相色谱-质谱联用法检测了太湖19条入湖河流中13种典型精神活性物质的质量浓度和空间分布规律。结果表明,在太湖19条入湖河流中除苯甲酰牙子碱(BE)和去甲氯胺酮(NK)外,其余11种目标物均有检出,质量浓度范围为n.d.~43.2 ng·L-1。其中麻黄碱(EPH)的检出率和中间浓度最高,分别为100%和11.0 ng·L-1;其次为甲基苯丙胺(METH),检出频率为58%,浓度中值为1.0 ng·L-1;苯丙胺(AMP)在东部湖区均未检出。大部分精神活性物质浓度水平较高的河流分布在竺山湾和西太湖,而海洛因(HR)的高值区主要在南太湖。运用风险熵方法对其进行风险评估,结果显示,太湖流域地表水中检出的13种精神活性物质的风险熵值均<0.1,生态风险较低,但其对水生生态系统的长期和综合风险值得关注。

English Abstract

参考文献 (38)

目录

/

返回文章
返回