淡水环境中短链氯化石蜡的预测无效应浓度及生态风险评估

孙乾航, 郑欣, 闫振广, 王书平, 范俊韬, 孔祥会. 淡水环境中短链氯化石蜡的预测无效应浓度及生态风险评估[J]. 生态毒理学报, 2020, 15(1): 256-264. doi: 10.7524/AJE.1673-5897.20190902001
引用本文: 孙乾航, 郑欣, 闫振广, 王书平, 范俊韬, 孔祥会. 淡水环境中短链氯化石蜡的预测无效应浓度及生态风险评估[J]. 生态毒理学报, 2020, 15(1): 256-264. doi: 10.7524/AJE.1673-5897.20190902001
Sun Qianhang, Zheng Xin, Yan Zhenguang, Wang Shuping, Fan Juntao, Kong Xianghui. Predicted No Effect Concentration and Ecological Risk Assessment of SCCPs in Freshwater Environments[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 256-264. doi: 10.7524/AJE.1673-5897.20190902001
Citation: Sun Qianhang, Zheng Xin, Yan Zhenguang, Wang Shuping, Fan Juntao, Kong Xianghui. Predicted No Effect Concentration and Ecological Risk Assessment of SCCPs in Freshwater Environments[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 256-264. doi: 10.7524/AJE.1673-5897.20190902001

淡水环境中短链氯化石蜡的预测无效应浓度及生态风险评估

    作者简介: 孙乾航(1994-),男,硕士,研究方向为环境毒理学,E-mail:511013643@qq.com
  • 基金项目:

    水体污染控制与治理科技重大专项(2017ZX07301002-01,2015ZX07202012)

  • 中图分类号: X171.5

Predicted No Effect Concentration and Ecological Risk Assessment of SCCPs in Freshwater Environments

  • Fund Project:
  • 摘要: 短链氯化石蜡(short-chain chlorinated paraffins, SCCPs)是《斯德哥尔摩公约》增列的一类持久性有机污染物。搜集筛选出SCCPs对8种淡水生物的慢性毒性数据,构建了物种敏感度分布曲线(SSD),推导出SCCPs的淡水预测无效应浓度(PNECwater)为0.425 μg·L-1,淡水沉积物预测无效应浓度(PNECsed)为992.5 μg kg-1。搜集了国内外部分淡水河流水体及沉积物中SCCPs环境暴露数据,运用商值法,评估SCCPs的生态风险。结果表明,长江中游和白洋淀水体风险商范围为2.6~154.4和3.7~132.5,处于高风险;国外河流SCCPs污染水平较低,北美地区与日本淡水河流SCCPs风险商小于1,处于低风险。长江中游沉积物的SCCPs的风险商高达400.6,呈现显著风险,欧洲工业区域淡水沉积物中SCCPs存在潜在风险。本研究为SCCPs水质标准制定与环境风险管理提供参考依据。
  • 加载中
  • Allpress J D, Gowland P C. Biodegradation of chlorinated paraffins and long-chain chloroalkanes by Rhodococcus sp. S45-1[J]. International Biodeterioration & Biodegradation, 1999, 43:173-179
    Fiedler H. Short-Chain Chlorinated Paraffins:Production, Use and International Regulations. Chlorinated Paraffins[M]//Fiedler H. The Handbook of Environmental Chemistry. Berlin:Springer-Verlag Berlin Heidelberg, 2010:1-40
    United Nations Environment Programme. Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Eighth Meeting[R]. Geneva:United Nations Environment Programme, 2017
    Wang X, Zhu J, Kong B, et al. C9-13 chlorinated paraffins cause immunomodulatory effects in adult C57BL/6 mice[J]. Science of the Total Environment, 2019, 675:110-121
    Fisk A T, Tomy G T, Muir D C G. Toxicity of C10-, C11-, and C12-polychlorinated alkanes Japanese medaka (Oryzias latipes) embryos[J]. Environmental Toxicity and Chemistry, 1999, 18(12):2894-2902
    Ren X, Zhang H, Geng N, et al. Developmental and metabolic responses of zebrafish (Danio rerio) embryos and larvae to short chain chlorinated paraffins (SCCPs) exposure[J]. Science of the Total Environment, 2017, 214:622-623
    Bur􀆪šková B, Bláha L, Vršková D, et al. Sublethal toxic effects and induction of glutathione S-transperase by short chain chlorinated paraffins (SCCPs) and C-12 alkane (dodecane) in Xenopus laevis frog embryos[J]. Acta Veterinaria Brno, 2006, 75:115-122
    Bucher J R, Alison R H, Montgomery C A, et al. Comparative toxicity and carcinogenicity of two chlorinated paraffins in F344/N rats and B6C3F1 mice[J]. Fundamental & Applied Toxicology, 1987, 9:454-468
    De Boer J, El-Sayed A T, Fiedler H, et al. Chlorinated paraffins[M]//Fiedler H. The Handbook of Environmental Chemistry. Berlin:Springer-Verlag Berlin Heidelberg, 2010:10
    Stern G A, Tomy G T. An overview of the environmental levels and distribution of polychorinated paraffins[J]. Organohalogen Compounds, 2000, 47:135-138
    European Commission. Technical guidance document on risk assessment[R]. Ispra:Institute for Health and Consumer Protection, European Communities, 2003:93-114
    Zhou Y, Yin G, Du X, et al. Short-chain chlorinated paraffins (SCCPs) in a freshwater food web from Dianshan Lake:Occurrence level, congener pattern and trophic transfer[J]. Science of the Total Environment, 2018, 615:1010-1018
    Sun R, Luo X, Tang B, et al. Short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary in South China:Residue levels and interspecies difference[J]. Science of the Total Environment, 2016, 553:196-203
    Ren X Q, Zhang H J, Geng N B, et al. Developmental and metabolic responses of zebrafish (Danio rerio) embryos and larvae to short-chain chlorinated paraffins (SCCPs) exposure[J]. Science of the Total Environment, 2017, 214:622-623
    Liu L H, Li Y F, Coelhan M, et al. Relative developmental toxicity of short-chain chlorinated paraffins in zebrafish (Danio rerio) embryos[J]. Environmental Pollution, 2016, 219:1122-1130
    吴丰昌,孟伟,曹宇静,等.镉的淡水水生生物水质基准研究[J].环境科学研究, 2011, 24(2):172-184

    Wu F C, Meng W, Cao Y J, et al. Study on water quality benchmark of fresh water aquatic organisms with cadmium[J]. Environmental Science Research, 2010, 24(2):172-184(in Chinese)

    冯承莲,吴丰昌,赵晓丽,等.水质基准研究与进展[J].中国科学:地球科学, 2012, 42(5):657-664

    Feng C L, Wu F C, Zhao X L, et al. Water quality criteria research and progress[J]. Science China:Earth Science, 2012, 42(5):646-656(in Chinese)

    European Chemical Bureau. Technical guidance document on risk assessment in support of commission Directive 93/67/EEC on risk assessment for new notified substance, commission regulation (EC) NO 1488/94 on risk assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market[R]. Luxembourg:Office for Official Publications of the European Communities, 2003
    Jin X W, Wang Y Y, Giesy J P, et al. Development of aquatic life criteria in China:Viewpoint on the challenge[J]. Environmental Science & Pollution Research, 2014, 21(1):61-66
    中华人民共和国环境保护部. HJ 831-2017:淡水水生生物水质基准制定技术指南[S].北京:中国环境出版社, 2017 Ministry of Environmental Protection of the People's Republic of China. HJ 831-2017:Technical Guideline for Deriving Water Quality Criteria for the Protection of Freshwater Aquatic Organisms[S]. Beijing:China Environmental Science Press, 2017

    (in Chinese)

    European Communities. Technical guidance document in support of council directive on risk assessment for new notified substances part Ⅱ:Enviromental risk assessment[R]. Luxembourg:Office for Official Publications of the European Communities, 1996
    Water Environment Research Foundation. Aquatic ecological risk assessment:A multi tiered approach[R]. Alexandria:Water Environment Research Foundation, 1996
    Lahnsteiner F, Berger B, Kletzl M, et al. Effect of bisphenol A on maturation and quality of semen and eggs in the brown trout, Salmo trutta f. fario[J]. Aquatic Toxicology, 2005, 75(3):213-224
    李秀环.常用农药助剂对大型溞的毒性研究[D].泰安:山东农业大学, 2013:6-29 Li X H. Toxicity of common pesticide additives to Daphnia magna[D]. Taian:Shandong Agricultural University, 2013:6

    -29(in Chinese)

    European Chemicals Bureau. European Union Risk Assessment Report, Alkanes, C10-13, Chloro-[R]. Ispra:European Chemicals Bureau, 1999
    Iino F, Tankasuga T, Senthilkumar K, et al. Risk assessmet of short-chain chlorinated paraffins in Japan based on the first market basket study and species sensitivity distributions[J]. Environmental Science & Technology, 2005, 38(3):859-866
    Zhang B, Zhao B, Xu C, et al. Emission inventory and provinical distribution of short-chain chlorinated paraffins in China[J]. Science of the Total Environment, 2017, 581-582:582-588
    万文胜.白洋淀和长江中游短链氯化石蜡的分布特征[D].石家庄:河北师范大学, 2017:24-50 Wan W S. Distribution characteristics of short-chain chlorinated paraffin in Baiyangdian Lake and the middle reaches of the Yangtze River[D]. Shijiazhuang:Hebei Normal University, 2017:24

    -50(in Chinese)

    Wang X T, Jia H H, Hu B P, et al. Occurrence, sources, partitioning and ecological risk of short-and mediumchain chlorinated paraffins in river water and sediments in Shanghai[J]. Science of the Total Environment, 2019, 653:475-484
    Castells P, Santos F J, Galceran M T. Solid-phase extraction versus solid-phase microextraction for the determination of chlorinated paraffins in water using gas chromatography-negative chemical ionisation mass spectrometry[J]. Journal of Chromatography A, 2004, 1025(2):157-162
    Castells P, Santos F J, Galceran M T. Solid-phase microextraction for the analysis of short-chain chlorinated paraffins in water samples[J]. Journal of Chromatography A, 2003, 984(1):1-8
    Nicholls C R, Allchin C R, Law R J. Levels of short and medium chain length polychlorinated n-alkanes in environmental sample from selected industrial areas in England and Wales[J]. Environmental Pollution, 2001, 114(1):415-430
    Moore S, Vromet L, Rondeau B. Comparison of metastable atom bombardment and electron capture negative ionization for the analysis of polyhloroalkanes[J]. Chemosphere, 2004, 54(4):453-459
    Houde M, Muir D C, Tomy G T, et al. Bioaccumulation and trophic magnification of short-and mediunm-chain chlorinated paraffins in food webs from Lake Ontario and Lake Michigan[J]. Environmental Science & Technology, 2008, 42(10):3893-3899
    Takasuga T, Hayashi A, Yamashita M, et al. Preliminary study of polychlorinated n-alkanes in standard mixtures, river water samples from Japan by HRGC-HRMS with negative ion chemical ionization[J]. Organohalogen Compounds, 2003, 60:424-427
    Qiao L, Xia D, Gao L, et al. Occurrences, sources and risk assessment of short-and medium-chain chlorinated paraffins insediments from the middle reaches of the Yellow River, China[J]. Environmental Pollution, 2016, 219:483-489
    Gao Y, Zhang H, Su F, et al. Environmental occurrence and distribution of short chain chlorinated paraffins in sediment and soils from the Liaohe River basin, P.R. China[J]. Environmental Science & Technology, 2012, 46(7):3771-3778
    Chen M Y, Luo X J, Zhang X L, et al. Chlorinated paraffins in sediment from the Peral River Delta, South China:Spatial and temporal distributions and implication for processes[J]. Environmental Science & Technology, 2011, 45(23):9936-9943
    Xu C, Zhang Q, Gao L, et al. Spatial distributions and transport implications of short-and medium-chain chlorinated paraffins in soils and sediments from an e-waste dismantling area in China[J]. Science of the Total Environment, 2019, 649:821-828
    Prˇibylová P, KlánováJ, Holoubek I. Screening of shortand medium-chain chlorinated paraffins in selected riverine sediments and sludge from the Czech Republic[J]. Environmental Pollution, 2006, 114(1):248-254
    Borgen A R, Schlabach M, Mariussen E. Screening of chlorinated paraffins in Norway[J]. Organohalogen Compounds, 2003, 60:331-334
    Tomy G T, Stern G A, Muir D C G, et al. Occurrence of polychloro-n-alkanes in Canadian mid-latitude and arctic lake sediment[J]. Organohalogen Compounds, 1997, 33:220-224
    Tomy G T, Stern G A, Muir D C G, et al. Quantifying C10-C13 polychloroalkanes in environmental samples by high-resolution gas chromatography electron capture negative ion high resolution mass spectrometry[J]. Analytical Chemistry, 1997, 69(14):2762-2771
    Marvin C H, Painter S, Tomy G T, et al. Spatial and temporal trends in short-chain chlorinated paraffins in Lake Ontario sediment[J]. Environmental Science & Technology, 2003, 37(20):456-458
    Tomy G T, Stern G A, Lockhart W L, et al. Occurrence of C10-C13 polychlorinated n-alkanes in Canadian midlatitude and aratic lake sediments[J]. Environmental Science & Technoloogy, 1999, 33(17):2858-2863
    刘娜,金小伟,王业耀,等.生态毒理数据筛查与评价准则研究[J].生态毒理学报, 2016, 11(3):1-10

    Liu N, Jin X W, Wang Y Y, et al. Review of criteria for screening and evaluating ecotoxicity data[J]. Asian Joural of Ecotoxicology, 2016, 11(3):1-10(in Chinese)

  • 加载中
计量
  • 文章访问数:  1794
  • HTML全文浏览数:  1794
  • PDF下载数:  51
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-02

淡水环境中短链氯化石蜡的预测无效应浓度及生态风险评估

    作者简介: 孙乾航(1994-),男,硕士,研究方向为环境毒理学,E-mail:511013643@qq.com
  • 1. 河南师范大学水产学院, 新乡 453007;
  • 2. 中国环境科学院,环境基准与风险评估国家重点实验室, 北京 100012
基金项目:

水体污染控制与治理科技重大专项(2017ZX07301002-01,2015ZX07202012)

摘要: 短链氯化石蜡(short-chain chlorinated paraffins, SCCPs)是《斯德哥尔摩公约》增列的一类持久性有机污染物。搜集筛选出SCCPs对8种淡水生物的慢性毒性数据,构建了物种敏感度分布曲线(SSD),推导出SCCPs的淡水预测无效应浓度(PNECwater)为0.425 μg·L-1,淡水沉积物预测无效应浓度(PNECsed)为992.5 μg kg-1。搜集了国内外部分淡水河流水体及沉积物中SCCPs环境暴露数据,运用商值法,评估SCCPs的生态风险。结果表明,长江中游和白洋淀水体风险商范围为2.6~154.4和3.7~132.5,处于高风险;国外河流SCCPs污染水平较低,北美地区与日本淡水河流SCCPs风险商小于1,处于低风险。长江中游沉积物的SCCPs的风险商高达400.6,呈现显著风险,欧洲工业区域淡水沉积物中SCCPs存在潜在风险。本研究为SCCPs水质标准制定与环境风险管理提供参考依据。

English Abstract

参考文献 (46)

目录

/

返回文章
返回