新型含氮消毒副产物的生成机制及毒性研究进展

翟家欣, 张欣然, 杨欣. 新型含氮消毒副产物的生成机制及毒性研究进展[J]. 生态毒理学报, 2020, 15(1): 17-33. doi: 10.7524/AJE.1673-5897.20190830001
引用本文: 翟家欣, 张欣然, 杨欣. 新型含氮消毒副产物的生成机制及毒性研究进展[J]. 生态毒理学报, 2020, 15(1): 17-33. doi: 10.7524/AJE.1673-5897.20190830001
Zhai Jiaxin, Zhang Xinran, Yang Xin. Research Overview on Formation Mechanism and Toxicity for Emerging Nitrogenous Disinfection Byproducts[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 17-33. doi: 10.7524/AJE.1673-5897.20190830001
Citation: Zhai Jiaxin, Zhang Xinran, Yang Xin. Research Overview on Formation Mechanism and Toxicity for Emerging Nitrogenous Disinfection Byproducts[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 17-33. doi: 10.7524/AJE.1673-5897.20190830001

新型含氮消毒副产物的生成机制及毒性研究进展

    作者简介: 翟家欣(1995-),女,硕士研究生,研究方向为环境化学,E-mail:zhaijx3@mail2.sysu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(21876210,21622706)

  • 中图分类号: X171.5

Research Overview on Formation Mechanism and Toxicity for Emerging Nitrogenous Disinfection Byproducts

  • Fund Project:
  • 摘要: 含氮消毒副产物(N-DBPs)具有很高的生物毒性和致癌性,近年来受到广泛关注。本文对目前N-DBPs的研究进展进行了概述,重点总结了典型N-DBPs包括卤乙腈(HANs)、卤代硝基甲烷(HNMs)、卤代乙酰胺(HAcAms)和亚硝胺(NAs)的生成机制;并归纳了N-DBPs的毒性效应和毒性机制。根据N-DBPs的生成途径,应该重点控制水中含胺类氮源前体物,并优化设计消毒剂种类和投加方式,在控制病原体的前提下,尽量削减高毒性N-DBPs的生成。本研究旨在为控制消毒副产物生成、提高饮用水水质提供理论参考。
  • 加载中
  • Rook J J. Formation of haloforms during chlorination of natural waters[J]. Water Treatment and Examination, 1974, 23(2):234-243
    Christman R F, Norwood D L, Millington D S, et al. Identity and yields of major halogenated products of aquatic fulvic acid chlorination[J]. Environmental Science & Technology, 1983, 17(10):625-628
    Oliver B G. Dihaloacetonitriles in drinking water:Algae and fulvic acid as precursors[J]. Environmental Science & Technology, 1983, 17(2):80-83
    Krasner S W, Weinberg H S, Richardson S D, et al. Occurrence of a new generation of disinfection byproducts[J]. Environmental Science & Technology, 2006, 40(23):7175-7185
    Plewa M J, Wagner E D, Muellner M G, et al. Comparative Mammalian Cell Toxicity of N-DBPs and C-DBPs[M]//Karanfil T, Krasner S W, Westerhoff P, et al. Disinfection By-Products in Drinking Water. Washington DC:American Chemical Society, 2008:36-50
    Plewa M J, Muellner M G, Richardson S D, et al. Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides:An emerging class of nitrogenous drinking water disinfection byproducts[J]. Environmental Science & Technology, 2008, 42(3):955-961
    Muellner M G, Wagner E D, McCalla K, et al. Haloacetonitriles vs. regulated haloacetic acids:Are nitrogen-containing DBPs more toxic?[J]. Environmental Science & Technology, 2007, 41(2):645-651
    Diana M, Felipe-Sotelo M, Bond T. Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer:A review[J]. Water Research, 2019, 162:492-504
    Bond T, Templeton M R, Graham N. Precursors of nitrogenous disinfection by-products in drinking water-A critical review and analysis[J]. Journal of Hazardous Materials, 2012, 235-236:1-16
    Merlet N, Thibaud H, Dore M. Chloropicrin formation during oxidative treatments in the preparation of drinking water[J]. Science of the Total Environment, 1985, 47:223-228
    Taguchi V Y, Jenkins S W D, Wang D T, et al. Determination of N-nitrosodimethylamine by isotope dilution, high-resolution mass spectrometry[J]. Canadian Journal of Applied Spectroscopy, 1994, 39(3):87-93
    Kadmi Y, Favier L, Wolbert D. N-nitrosamines, emerging disinfection by-products of health concern:An overview of occurrence, mechanisms of formation, control and analysis in water[J]. Water Supply, 2014, 15(1):11-25
    Simpson K L, Hayes K P. Drinking water disinfection byproducts:An Australian perspective[J]. Water Research, 1998, 32(5):1522-1528
    Goslan E H, Krasner S W, Bower M, et al. A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland[J]. Water Research, 2009, 43(18):4698-4706
    Liew D, Linge K L, Joll C A, et al. Determination of halonitromethanes and haloacetamides:An evaluation of sample preservation and analyte stability in drinking water[J]. Journal of Chromatography A, 2012, 1241:117-122
    Wang L, Chen Y, Chen S W, et al. A one-year long survey of temporal disinfection byproducts variations in a consumer's tap and their removals by a point-of-use facility[J]. Water Research, 2019, 159:203-213
    Chu W H, Gao N Y, Templeton M R, et al. Comparison of inclined plate sedimentation and dissolved air flotation for the minimisation of subsequent nitrogenous disinfection by-product formation[J]. Chemosphere, 2011, 83(5):647-651
    Chu W H, Gao N Y, Deng Y, et al. Formation of nitrogenous disinfection by-products from pre-chloramination[J]. Chemosphere, 2011, 85(7):1187-1191
    Wei J R, Ye B X, Wang W Y, et al. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China[J]. Science of the Total Environment, 2010, 408(20):4600-4606
    Ding H H, Meng L P, Zhang H F, et al. Occurrence, profiling and prioritization of halogenated disinfection byproducts in drinking water of China[J]. Environmental Science Processes & Impacts, 2013, 15(7):1424-1429
    Gan W H, Guo W H, Mo J M, et al. The occurrence of disinfection by-products in municipal drinking water in China's Pearl River Delta and a multipathway cancer risk assessment[J]. Science of the Total Environment, 2013, 447:108-115
    Huang H, Zhu H H, Gan W H, et al. Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen, China[J]. Chemosphere, 2017, 188:257-264
    Chu W H, Gao N Y, Yin D Q, et al. Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization[J]. Journal of Chromatography A, 2012, 1235:178-181
    Zhou X L, Zheng L L, Chen S Y, et al. Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China[J]. Ecotoxicology and Environmental Safety, 2019, 171:813-822
    Yu Y, Ma X, Chen R Y, et al. The occurrence and transformation behaviors of disinfection byproducts in drinking water distribution systems in rural areas of eastern China[J]. Chemosphere, 2019, 228:101-109
    Templeton M R, Chen Z. NDMA and seven other nitrosamines in selected UK drinking water supply systems[J]. Journal of Water Supply:Research and Technology-Aqua, 2010, 59(4):277-283
    Asami M, Oya M, Kosaka K. A nationwide survey of NDMA in raw and drinking water in Japan[J]. Science of the Total Environment, 2009, 407(11):3540-3545
    Bei E, Shu Y Y, Li S X, et al. Occurrence of nitrosamines and their precursors in drinking water systems around mainland China[J]. Water Research, 2016, 98:168-175
    Krasner S W, Mitch W A, McCurry D L, et al. Formation, precursors, control, and occurrence of nitrosamines in drinking water:A review[J]. Water Research, 2013, 47(13):4433-4450
    Ma F J, Wan Y, Yuan G X, et al. Occurrence and source of nitrosamines and secondary amines in groundwater and its adjacent Jialu River Basin, China[J]. Environmental Science & Technology, 2012, 46(6):3236-3243
    Wang C K, Zhang X J, Wang J, et al. Detecting N-nitrosamines in water treatment plants and distribution systems in China using ultra-performance liquid chromatographytandem mass spectrometry[J]. Frontiers of Environmental Science & Engineering, 2012, 6(6):770-777
    Wang W F, Yu J W, An W, et al. Occurrence and profiling of multiple nitrosamines in source water and drinking water of China[J]. Science of the Total Environment, 2016, 551-552:489-495
    Li T, Yu D, Xian Q M, et al. Variation of levels and distribution of N-nitrosamines in different seasons in drinking waters of East China[J]. Environmental Science & Pollution Research International, 2015, 22(15):11792-11800
    Wang W F, Hu J Y, Yu J W, et al. Determination of N-nitrosodimethylamine in drinking water by UPLC-MS/MS[J]. Journal of Environmental Sciences, 2010, 22(10):1508-1512
    Wang C K, Liu S M, Wang J, et al. Monthly survey of Nnitrosamine yield in a conventional water treatment plant in North China[J]. Journal of Environmental Sciences, 2015, 38:142-149
    Wang W F, Ren S Y, Zhang H F, et al. Occurrence of nine nitrosamines and secondary amines in source water and drinking water:Potential of secondary amines as nitrosamine precursors[J]. Water Research, 2011, 45(16):4930-4938
    Wang X Z, Liu Z M, Wang C, et al. Occurrence and formation potential of nitrosamines in river water and ground water along the Songhua River, China[J]. Journal of Environmental Sciences, 2016, 50:65-71
    Fan C C, Lin T F. N-nitrosamines in drinking water and beer:Detection and risk assessment[J]. Chemosphere, 2018, 200:48-56
    Joo S H, Mitch W A. Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines[J]. Environmental Science & Technology, 2007, 41(4):1288-1296
    Yang X, Fan C, Shang C, et al. Nitrogenous disinfection byproducts formation and nitrogen origin exploration during chloramination of nitrogenous organic compounds[J]. Water Research, 2010, 44(9):2691-2702
    Yang X, Shen Q Q, Guo W H, et al. Precursors and nitrogen origins of trichloronitromethane and dichloroacetonitrile during chlorination/chloramination[J]. Chemosphere, 2012, 88(1):25-32
    Yang X, Shang C, Shen Q Q, et al. Nitrogen origins and the role of ozonation in the formation of haloacetonitriles and halonitromethanes in chlorine water treatment[J]. Environmental Science & Technology, 2012, 46(23):12832-12838
    Vu T N, Kimura S Y, Plewa M J, et al. Predominant Nhaloacetamide and haloacetonitrile formation in drinking water via the aldehyde reaction pathway[J]. Environmental Science & Technology, 2019, 53(2):850-859
    Shan J H, Hu J, Sule Kaplan-Bekaroglu S, et al. The effects of pH, bromide and nitrite on halonitromethane and trihalomethane formation from amino acids and amino sugars[J]. Chemosphere, 2012, 86(4):323-328
    Bond T, Henriet O, Goslan E H, et al. Disinfection byproduct formation and fractionation behavior of natural organic matter surrogates[J]. Environmental Science & Technology, 2009, 43(15):5982-5989
    Hong H C, Xiong Y J, Ruan M Y, et al. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine[J]. Science of the Total Environment, 2013, 444:196-204
    Hu J, Song H, Addison J W, et al. Halonitromethane formation potentials in drinking waters[J]. Water Research, 2010, 44(1):105-114
    Song H, Addison J W, Hu J, et al. Halonitromethanes formation in wastewater treatment plant effluents[J]. Chemosphere, 2010, 79(2):174-179
    Huang F Q, Ruan M Y, Yan J D, et al. An improved method for determining HNMs in drinking water[J]. Water Supply, 2013, 13(5):1257-1264
    Hu J, Song H, Karanfil T. Comparative analysis of halonitromethane and trihalomethane formation and speciation in drinking water:The effects of disinfectants, pH, bromide, and nitrite[J]. Environmental Science & Technology, 2010, 44(2):794-799
    Hong H C, Qian L Y, Xiao Z Q, et al. Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin[J]. Journal of Hydrology, 2015, 531:802-809
    Shah A D, Mitch W A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines:A critical review of nitrogenous disinfection byproduct formation pathways[J]. Environmental Science & Technology, 2012, 46(1):119-131
    Reckhow D A, Linden K G, Kim J, et al. Effect of UV treatment on DBP formation[J]. Journal-American Water Works Association, 2010, 102(6):100-113
    Shah A D, Dotson A D, Linden K G, et al. Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water[J]. Environmental Science & Technology, 2011, 45(8):3657-3664
    Vione D, Maurino V, Minero C, et al. Formation of nitrophenols upon UV irradiation of phenol and nitrate in aqueous solutions and in TiO2 aqueous suspensions[J]. Chemosphere, 2001, 44(2):237-248
    Glezer V, Harris B, Tal N, et al. Hydrolysis of haloacetonitriles:Linear free energy relationship, kinetics and products[J]. Water Research, 1999, 33(8):1938-1948
    Yu Y, Reckhow D A. Formation and occurrence of Nchloro-2,2-dichloroacetamide, a previously overlooked nitrogenous disinfection byproduct in chlorinated drinking waters[J]. Environmental Science & Technology, 2017, 51(3):1488-1497
    Yu Y, Reckhow D A. Kinetic analysis of haloacetonitrile stability in drinking waters[J]. Environmental Science & Technology, 2015, 49(18):11028-11036
    Huang H, Wu Q Y, Hu H Y, et al. Dichloroacetonitrile and dichloroacetamide can form independently during chlorination and chloramination of drinking waters, model organic matters, and wastewater effluents[J]. Environmental Science & Technology, 2012, 46(19):10624-10631
    Chu W H, Li X, Bond T, et al. The formation of haloacetamides and other disinfection by-products from non-nitrogenous low-molecular weight organic acids during chloramination[J]. Chemical Engineering Journal, 2016, 285:164-171
    Kimura S Y, Komaki Y, Plewa M J, et al. Chloroacetonitrile and N,2-dichloroacetamide formation from the reaction of chloroacetaldehyde and monochloramine in water[J]. Environmental Science & Technology, 2013, 47(21):12382-12390
    Ding S K, Chu W H, Bond T, et al. Contribution of amide-based coagulant polyacrylamide as precursors of haloacetamides and other disinfection by-products[J]. Chemical Engineering Journal, 2018, 350:356-363
    Wang A Q, Lin Y L, Xu B, et al. Degradation of acrylamide during chlorination as a precursor of haloacetonitriles and haloacetamides[J]. Science of the Total Environment, 2018, 615:38-46
    How Z T, Kristiana I, Busetti F, et al. Organic chloramines in chlorine-based disinfected water systems:A critical review[J]. Journal of Environmental Sciences, 2017, 58:2-18
    Nihemaiti M, Le Roux J, Hoppe-Jones C, et al. Formation of haloacetonitriles, haloacetamides, and nitrogenous heterocyclic byproducts by chloramination of phenolic compounds[J]. Environmental Science & Technology, 2017, 51(1):655-663
    Chuang Y H, McCurry D L, Tung H H, et al. Formation pathways and trade-offs between haloacetamides and haloacetaldehydes during combined chlorination and chloramination of lignin phenols and natural waters[J]. Environmental Science & Technology, 2015, 49(24):14432-14440
    Chu W H, Gao N Y, Deng Y, et al. Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination[J]. Environmental Science & Technology, 2010, 44(10):3908-3912
    Chu W H, Krasner S W, Gao N Y, et al. Contribution of the antibiotic chloramphenicol and its analogues as precursors of dichloroacetamide and other disinfection byproducts in drinking water[J]. Environmental Science & Technology, 2016, 50(1):388-396
    Choi J, Valentine R L. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine:A new disinfection by-product[J]. Water Research, 2002, 36(4):817-824
    Mitch W A, Sedlak D L. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination[J]. Environmental Science & Technology, 2002, 36(4):588-595
    Schreiber I M, Mitch W A. Occurrence and fate of nitrosamines and nitrosamine precursors in wastewater-impacted surface waters using boron as a conservative tracer[J]. Environmental Science & Technology, 2006, 40(10):3203-3210
    Schreiber I M, Mitch W A. Nitrosamine formation pathway revisited:The importance of chloramine speciation and dissolved oxygen[J]. Environmental Science & Technology, 2006, 40(19):6007-6014
    McCurry D L, Ishida K P, Oelker G L, et al. Reverse osmosis shifts chloramine speciation causing re-formation of NDMA during potable reuse of wastewater[J]. Environmental Science & Technology, 2017, 51(15):8589-8596
    Sgroi M, Vagliasindi F G A, Snyder S A, et al. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater:A review on formation and removal[J]. Chemosphere, 2018, 191:685-703
    Spahr S, Cirpka O A, Von Gunten U, et al. Formation of N-nitrosodimethylamine during chloramination of secondary and tertiary amines:Role of molecular oxygen and radical intermediates[J]. Environmental Science & Technology, 2017, 51(1):280-290
    Le Roux J, Gallard H, Croué J-P. Formation of NDMA and halogenated DBPs by chloramination of tertiary amines:The influence of bromide ion[J]. Environmental Science & Technology, 2012, 46(3):1581-1589
    Luh J, Mariñas B J. Bromide ion effect on N-nitrosodimethylamine formation by monochloramine[J]. Environmental Science & Technology, 2012, 46(9):5085-5092
    Andrzejewski P, Kasprzyk-Hordern B, Nawrocki J. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters[J]. Water Research, 2008, 42(4):863-870
    Padhye L, Luzinova Y, Cho M, et al. PolyDADMAC and dimethylamine as precursors of N-nitrosodimethylamine during ozonation:Reaction kinetics and mechanisms[J]. Environmental Science & Technology, 2011, 45(10):4353-4359
    Schmidt C K, Brauch H J. N,N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment[J]. Environmental Science & Technology, 2008, 42(17):6340-6346
    Yang L, Chen Z L, Shen J M, et al. Reinvestigation of the nitrosamine-formation mechanism during ozonation[J]. Environmental Science & Technology, 2009, 43(14):5481-5487
    Zhang Y M, Chu W H, Yao D C, et al. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes:Formation potential and integrated toxicity[J]. Journal of Environmental Sciences, 2017, 58:322-330
    Curieux F L, Marzin D, Erb F. Study of the genotoxic activity of five chlorinated propanones using the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test[J]. Mutation Research, 1995, 341(4):289-302
    Richardson S D, Plewa M J, Wagner E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:A review and roadmap for research[J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1):178-242
    Lin T, Zhou D J, Dong J, et al. Acute toxicity of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), on zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2016, 133:97-104
    Ahmed A E, Jacob S, Nagy A A, et al. Dibromoacetonitrile-induced protein oxidation and inhibition of proteasomal activity in rat glioma cells[J]. Toxicology Letters, 2008, 179(1):29-33
    Lu G H, Qin D H, Wang Y H, et al. Single and combined effects of selected haloacetonitriles in a human-derived hepatoma line[J]. Ecotoxicology and Environmental Safety, 2018, 163:417-426
    Plewa M J, Wagner E D, Paulina J, et al. Halonitromethane drinking water disinfection byproducts:Chemical characterization and mammalian cell cytotoxicity and genotoxicity[J]. Environmental Science & Technology, 2004, 38(1):62-68
    Wagner E D, Plewa M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products:An updated review[J]. Journal of Environmental Sciences, 2017, 58:64-76
    Liviac D, Creus A, Marcos R. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection byproducts (DBPs), in human cells treated in vitro[J]. Environmental Research, 2009, 109(3):232-238
    Yin J B, Wu B, Zhang X X, et al. Comparative toxicity of chloro-and bromo-nitromethanes in mice based on a metabolomic method[J]. Chemosphere, 2017, 185:20-28
    Schneider M, Quistad G B, Casida J E. Glutathione activation of chloropicrin in the Salmonella mutagenicity test[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1999, 439(2):233-238
    Kundu B, Richardson S D, Granville C A, et al. Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA100:Structure-activity analysis and mutation spectra[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 554(1):335-350
    Kundu B, Richardson S D, Swartz P D, et al. Mutagenicity in Salmonella of halonitromethanes:A recently recognized class of disinfection by-products in drinking water[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2004, 562(1):39-65
    Yang F, Zhang J, Chu W H, et al. Haloactamides versus halomethanes formation and toxicity in chloraminated drinking water[J]. Journal of Hazardous Materials, 2014, 274:156-163
    Plewa M J, Muellner M G, Richardson S D, et al. Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides:An emerging class of nitrogenous drinking water disinfection byproducts[J]. Environmental Science & Technology, 2008, 42(3):955-961
    庞维海,杨帆,楚文海,等.饮用水中氯代乙酰胺的细胞毒性和遗传毒性[J].同济大学学报:自然科学版, 2014, 42(12):1873-1878

    Pang W H, Yang F, Chu W H, et al. Cytotoxicity and genotoxicity of chloroacetamide, a relatively newly identified group of nitrogenous disinfection byproducts in drinking water[J]. Journal of Tongji University:Natural Science, 2014, 42(12):1873-1878(in Chinese)

    Ding X L, Zhu J Y, Wang X X, et al. Different cytotoxicity of disinfection by-product haloacetamides on two exposure pathway-related cell lines:Human gastric epithelial cell line GES-1 and immortalized human keratinocyte cell line HaCaT[J]. Science of the Total Environment, 2019, 692:1267-1275
    Annola K, Heikkinen A T, Partanen H, et al. Transplacental transfer of nitrosodimethylamine in perfused human placenta[J]. Placenta, 2009, 30(3):277-283
    Liteplo R G, Meek M E. N-nitrosodimethylamine:Hazard characterization and exposure-response analysis[J]. Journal of Environmental Science & Health Part C-Environmental Carcinogenesis Reviews, 2001, 19(1):281-304
    Sharma V, Singh M. N-nitrosodimethylamine as a hazardous chemical toxicant in drinking water[J]. International Research Journal of Pharmacy, 2012, 3(3):60-65
    Wang H Y, Qin M, Dong L, et al. Genotoxicity of a lowdose nitrosamine mixture as drinking water disinfection byproducts in NIH3T3 cells[J]. International Journal of Medical Sciences, 2017, 14(10):961-969
    Wagner E D, Hsu K M, Lagunas A, et al. Comparative genotoxicity of nitrosamine drinking water disinfection byproducts in Salmonella and mammalian cells[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2012, 741(1):109-115
    Lipscomb J C, El-Demerdash E, Ahmed A E. Haloacetonitriles:Metabolism and Toxicity[M]//Whitacre D M. Reviews of Environmental Contamination and Toxicology. New York:Springer New York, 2009:169-200
    Van de Water B, Wang Y, Asmellash S, et al. Distinct endoplasmic reticulum signaling pathways regulate apoptotic and necrotic cell death following iodoacetamide treatment[J]. Chemical Research in Toxicology, 1999, 12(10):943-951
    Hong H C, Wu H, Chen J, et al. Cytotoxicity induced by iodinated haloacetamides via ROS accumulation and apoptosis in HepG-2 cells[J]. Environmental Pollution, 2018, 242:191-197
    徐淼,张倩男,杨辉,等.亚硝胺及前体化合物的致癌效应及其食用安全性研究进展[J].癌变·畸变·突变, 2018, 30(1):76-79
  • 加载中
计量
  • 文章访问数:  3503
  • HTML全文浏览数:  3503
  • PDF下载数:  159
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-30

新型含氮消毒副产物的生成机制及毒性研究进展

    作者简介: 翟家欣(1995-),女,硕士研究生,研究方向为环境化学,E-mail:zhaijx3@mail2.sysu.edu.cn
  • 中山大学环境科学与工程学院, 广州 510006
基金项目:

国家自然科学基金资助项目(21876210,21622706)

摘要: 含氮消毒副产物(N-DBPs)具有很高的生物毒性和致癌性,近年来受到广泛关注。本文对目前N-DBPs的研究进展进行了概述,重点总结了典型N-DBPs包括卤乙腈(HANs)、卤代硝基甲烷(HNMs)、卤代乙酰胺(HAcAms)和亚硝胺(NAs)的生成机制;并归纳了N-DBPs的毒性效应和毒性机制。根据N-DBPs的生成途径,应该重点控制水中含胺类氮源前体物,并优化设计消毒剂种类和投加方式,在控制病原体的前提下,尽量削减高毒性N-DBPs的生成。本研究旨在为控制消毒副产物生成、提高饮用水水质提供理论参考。

English Abstract

参考文献 (107)

目录

/

返回文章
返回